(2009•黃石)為了擴大內需,讓惠于農民,豐富農民的業(yè)余生活,鼓勵送彩電下鄉(xiāng),國家決定對購買彩電的農戶實行政府補貼.規(guī)定每購買一臺彩電,政府補貼若干元,經(jīng)調查某商場銷售彩電臺數(shù)y(臺)與補貼款額x(元)之間大致滿足如圖①所示的一次函數(shù)關系.隨著補貼款額x的不斷增大,銷售量也不斷增加,但每臺彩電的收益Z(元)會相應降低且Z與x之間也大致滿足如圖②所示的一次函數(shù)關系.

(1)在政府未出臺補貼措施前,該商場銷售彩電的總收益額為多少元?
(2)在政府補貼政策實施后,分別求出該商場銷售彩電臺數(shù)y和每臺家電的收益z與政府補貼款額x之間的函數(shù)關系式;
(3)要使該商場銷售彩電的總收益w(元)最大,政府應將每臺補貼款額x定為多少并求出總收益w的最大值.
【答案】分析:(1)總收益=每臺收益×總臺數(shù);
(2)結合圖象信息分別利用待定系數(shù)法求解;
(3)把y與z的表達式代入進行整理,求函數(shù)最值.
解答:解:(1)該商場銷售家電的總收益為
800×200=160000(元);

(2)根據(jù)題意設
y=k1x+800,Z=k2x+200
∴400k1+800=1200,200k2+200=160
解得k1=1,k2=-
∴y=x+800,Z=-x+200;

(3)W=yZ=(x+800)•(-x+200),
=-(x-100)2+162000.
∵-<0,
∴W有最大值.
當x=100時,W最大=162000
∴政府應將每臺補貼款額x定為100元,總收益有最大值
其最大值為162000元.
點評:本題主要考查待定系數(shù)法求函數(shù)解析式和二次函數(shù)的最值問題,審好題非常重要!
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2009•黃石)為了擴大內需,讓惠于農民,豐富農民的業(yè)余生活,鼓勵送彩電下鄉(xiāng),國家決定對購買彩電的農戶實行政府補貼.規(guī)定每購買一臺彩電,政府補貼若干元,經(jīng)調查某商場銷售彩電臺數(shù)y(臺)與補貼款額x(元)之間大致滿足如圖①所示的一次函數(shù)關系.隨著補貼款額x的不斷增大,銷售量也不斷增加,但每臺彩電的收益Z(元)會相應降低且Z與x之間也大致滿足如圖②所示的一次函數(shù)關系.

(1)在政府未出臺補貼措施前,該商場銷售彩電的總收益額為多少元?
(2)在政府補貼政策實施后,分別求出該商場銷售彩電臺數(shù)y和每臺家電的收益z與政府補貼款額x之間的函數(shù)關系式;
(3)要使該商場銷售彩電的總收益w(元)最大,政府應將每臺補貼款額x定為多少并求出總收益w的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年云南省昆明市安寧市青龍學校中考數(shù)學模擬試卷(一)(解析版) 題型:解答題

(2009•黃石)為了擴大內需,讓惠于農民,豐富農民的業(yè)余生活,鼓勵送彩電下鄉(xiāng),國家決定對購買彩電的農戶實行政府補貼.規(guī)定每購買一臺彩電,政府補貼若干元,經(jīng)調查某商場銷售彩電臺數(shù)y(臺)與補貼款額x(元)之間大致滿足如圖①所示的一次函數(shù)關系.隨著補貼款額x的不斷增大,銷售量也不斷增加,但每臺彩電的收益Z(元)會相應降低且Z與x之間也大致滿足如圖②所示的一次函數(shù)關系.

(1)在政府未出臺補貼措施前,該商場銷售彩電的總收益額為多少元?
(2)在政府補貼政策實施后,分別求出該商場銷售彩電臺數(shù)y和每臺家電的收益z與政府補貼款額x之間的函數(shù)關系式;
(3)要使該商場銷售彩電的總收益w(元)最大,政府應將每臺補貼款額x定為多少并求出總收益w的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年初中數(shù)學第一輪復習教學案例.4.5.二次函數(shù)(解析版) 題型:解答題

(2009•黃石)為了擴大內需,讓惠于農民,豐富農民的業(yè)余生活,鼓勵送彩電下鄉(xiāng),國家決定對購買彩電的農戶實行政府補貼.規(guī)定每購買一臺彩電,政府補貼若干元,經(jīng)調查某商場銷售彩電臺數(shù)y(臺)與補貼款額x(元)之間大致滿足如圖①所示的一次函數(shù)關系.隨著補貼款額x的不斷增大,銷售量也不斷增加,但每臺彩電的收益Z(元)會相應降低且Z與x之間也大致滿足如圖②所示的一次函數(shù)關系.

(1)在政府未出臺補貼措施前,該商場銷售彩電的總收益額為多少元?
(2)在政府補貼政策實施后,分別求出該商場銷售彩電臺數(shù)y和每臺家電的收益z與政府補貼款額x之間的函數(shù)關系式;
(3)要使該商場銷售彩電的總收益w(元)最大,政府應將每臺補貼款額x定為多少并求出總收益w的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年湖北省黃石市中考數(shù)學試卷(解析版) 題型:填空題

(2009•黃石)若拋物線y=ax2+bx+3與y=-x2+3x+2的兩交點關于原點對稱,則a、b分別為       

查看答案和解析>>

同步練習冊答案