【題目】閱讀材料題
點(diǎn)A、B在數(shù)軸上分別表示實(shí)數(shù)、,A、B兩點(diǎn)之間的距離記作AB. 當(dāng)A、B兩點(diǎn)中有一點(diǎn)為原點(diǎn)時(shí),不妨設(shè)A點(diǎn)在原點(diǎn)。如下圖①所示,則AB =OB ==.
當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時(shí):
(1)上圖②所示,點(diǎn)A、B都在原點(diǎn)的右邊,不妨設(shè)點(diǎn)A在點(diǎn)B的左側(cè),則AB=OB-OA====
(2)上圖③所示,點(diǎn)A、B都在原點(diǎn)的左邊,不妨設(shè)點(diǎn)A在點(diǎn)B的右側(cè),則AB=OB-OA====
(3)如上圖④所示,點(diǎn)A、B分別在原點(diǎn)的兩邊,不妨設(shè)點(diǎn)A在點(diǎn)O的右側(cè),則AB=OB+OA===
回答下列問(wèn)題:
①綜上所述,數(shù)軸上A、B兩點(diǎn)之間的距離AB= .
②數(shù)軸上表示2和的兩點(diǎn)A和B之間的距離AB= .
③數(shù)軸上表示x和的兩點(diǎn)A和B之間的距離AB= ,如果AB=2,則x的值為 .
④若代數(shù)式有最小值,則最小值為 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在半徑為4的⊙O中,AB、CD是兩條直徑,M為OB的中點(diǎn),CM的延長(zhǎng)線交⊙O于點(diǎn)E,且EM>MC.連結(jié)DE,DE=.
(1)求證:;
(2)求EM的長(zhǎng);
(3)求sin∠EOB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,以點(diǎn)A為圓心,以任意長(zhǎng)為半徑畫(huà)圓弧,分別交邊AD、AB于點(diǎn)M、N,再分別以點(diǎn)M、N為圓心,以大于長(zhǎng)為半徑畫(huà)圓弧,兩弧交于點(diǎn)P,作射線AP交邊CD于點(diǎn)E,過(guò)點(diǎn)E作EF∥AD交AB于點(diǎn)F.若AB=5,CE=2,則四邊形ADEF的周長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線 (a≠0)的對(duì)稱(chēng)軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;
②方程 的兩個(gè)根是x1=﹣1,x2=3;
③3a+c>0
④當(dāng)y>0時(shí),x的取值范圍是﹣1≤x<3
⑤當(dāng)x<0時(shí),y隨x增大而增大
其中結(jié)論正確的個(gè)數(shù)是( 。
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一位小朋友在粗糙不打滑的“Z”字形平面軌道上滾動(dòng)一個(gè)半徑為10cm的圓盤(pán),如圖所示,AB與CD是水平的,BC與水平面的夾角為60°,其中AB=60cm,CD=40cm,BC=40cm,那么該小朋友將圓盤(pán)從A點(diǎn)滾動(dòng)到D點(diǎn)其圓心所經(jīng)過(guò)的路線長(zhǎng)為___________cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),AB∥CD,猜想∠BPD與∠B、∠D的關(guān)系,說(shuō)出理由.
解:猜想∠BPD+∠B+∠D=360°
理由:過(guò)點(diǎn)P作EF∥AB,
∴∠B+∠BPE=180°(兩直線平行,同旁?xún)?nèi)角互補(bǔ))
∵AB∥CD,EF∥AB,
∴EF∥CD,(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行.)
∴∠EPD+∠D=180°(兩直線平行,同旁?xún)?nèi)角互補(bǔ))
∴∠B+∠BPE+∠EPD+∠D=360°
∴∠B+∠BPD+∠D=360°
(1)依照上面的解題方法,觀察圖(2),已知AB∥CD,猜想圖中的∠BPD與∠B、∠D的關(guān)系,并說(shuō)明理由.
(2)觀察圖(3)和(4),已知AB∥CD,猜想圖中的∠BPD與∠B、∠D的關(guān)系,不需要說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年3月,某市教育主管部門(mén)在初中生中開(kāi)展了“文明禮儀知識(shí)競(jìng)賽”活動(dòng),活動(dòng)結(jié)束后,隨機(jī)抽取了部分同學(xué)的成績(jī)(x均為整數(shù),總分100分),繪制了如下尚不完整的統(tǒng)計(jì)圖表.
調(diào)查結(jié)果統(tǒng)計(jì)表
組別 | 成績(jī)分組(單位:分) | 頻數(shù) | 頻率 |
A | 80≤x<85 | 50 | 0.1 |
B | 85≤x<90 | 75 | |
C | 90≤x<95 | 150 | c |
D | 95≤x≤100 | a | |
合計(jì) | b | 1 |
根據(jù)以上信息解答下列問(wèn)題:
(1)統(tǒng)計(jì)表中,a=_____,b=_____,c=_____;
(2)扇形統(tǒng)計(jì)圖中,m的值為_____,“C”所對(duì)應(yīng)的圓心角的度數(shù)是_____;
(3)若參加本次競(jìng)賽的同學(xué)共有5000人,請(qǐng)你估計(jì)成績(jī)?cè)?/span>95分及以上的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為6的正方形繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)后得到正方形,交于點(diǎn),則____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCO的邊OA、OC在坐標(biāo)軸上,點(diǎn)B坐標(biāo)為(6,6),將正方形ABCO繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點(diǎn)G,ED的延長(zhǎng)線交線段OA于點(diǎn)H,連CH、CG.
(1)求證:△CBG≌△CDG;
(2)求∠HCG的度數(shù);并判斷線段HG、OH、BG之間的數(shù)量關(guān)系,說(shuō)明理由;
(3)連結(jié)BD、DA、AE、EB得到四邊形AEBD,在旋轉(zhuǎn)過(guò)程中,四邊形AEBD能否為矩形?如果能,請(qǐng)求出點(diǎn)H的坐標(biāo);如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com