【題目】四邊形ABCD內(nèi)接于⊙O,AC為對角線,∠ACB=∠ACD

1)如圖1,求證:ABAD

2)如圖2,點EAB弧上,DEAC于點F,連接BE,BEDF,求證:DFDC;

3)如圖3,在(2)的條件下,點GBC弧上,連接DG,交CE于點H,連接GEGF,若DEBC,EGGH5,SDFG9,求BC邊的長.

【答案】1)見解析;(2)見解析;(3

【解析】

1)如圖1,連接OA,OBOD,由∠ACB=∠ACD,可得,可得ABAD;

2)連接AE,由“SAS”可證△ABE≌△ADF,可得∠BAE=∠DAC,可證BECDDF;

3)如圖3,過點FFNGDN,過點CCMGDM,連接GC,通過證明△FDN≌△DCM,可得FNDM,CMDN,由面積公式可求FN2,DM2,DH4,通過證明△EGC∽△DMC,△GEH∽△CHD,可得ECCD,CD2,由勾股定理可求解.

證明:(1)如圖1,連接OAOB,OD

∵∠ACB=∠ACD,∠AOD2ACD,∠AOB2ACB

∴∠AOD=∠AOB

ADAB;

2)如圖2,連接AE,

∴∠ABE=∠ADE

在△ABE和△ADF

∴△ABE≌△ADFSAS

∴∠BAE=∠DAC

BEDC

BEDF

DFDC;

3)如圖3,過點FFNGDN,過點CCMGDM,連接GC,

DEBCBECD,

∴四邊形BCDE是平行四邊形,

∴∠EBC=∠EDC,

∵四邊形BEDC是圓內(nèi)接四邊形,

∴∠EBC+EDC180°,

∴∠EDC=∠EBC90°,

EC是直徑,

∴∠FGC=∠EDC90°

∴∠FDN+MDC90°,且∠MDC+MCD90°

∴∠FDN=∠MCD,且∠FND=∠CMD90°,DFDC,

∴△FDN≌△DCMAAS

FNDM,CMDN

EGGH5,

∴∠GEH=∠GHE,且∠GHE=∠DHC,∠GEH=∠GDC

∴∠HDC=∠CHD,

CHCD,且CMDH

DMMHFN,

SDFG9,

DG×FN9,

×5+2FN×FN9,

FN2,

DM2DH4,

∵∠GEC=∠GDC,∠EGC=∠DMC,

∴△EGC∽△DMC,

,

ECCD,且HCCD,

EHCD,

∵∠EGD=∠ECD,∠GEC=∠GDC,

∴△GEH∽△CHD,

,

,

EC2CD2DE2,

,

DE

BC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD繞點A旋轉(zhuǎn)至矩形AB′C′D′位置,此時AC′的中點恰好與D點重合,AB′CD于點E.若AB=6,則AEC的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點A與原點O重合,頂點B在直線l上,將正方形沿射線OB方向無滑動地翻滾.若直線,正方形邊長為2

1)翻滾后點A第一次落在直線l上的坐標(biāo)是_____;

2)當(dāng)正方形翻滾2002次點A對應(yīng)點的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:各類方程的解法

求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為的形式:求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來解;類似的,求解三元一次方程組,把它轉(zhuǎn)化為二元一次方程組來解;求解一元二次方程,把它轉(zhuǎn)化為兩個一元一次方程來解:求解分式方程,把它轉(zhuǎn)化為整式方程來解,由于“去分母”可能產(chǎn)生增根,所以解分式方程必須檢驗.各類方程的解法不盡相同,但是它們有一個共同的基本數(shù)學(xué)思想一一轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.用“轉(zhuǎn)化”的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程,可以通過因式分解把它轉(zhuǎn)化為,解方程,可得方程的解.利用上述材料給你的啟示,解下列方程;

1;

2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ADBC于點D,點EAB邊上,連接CE,若∠BCE2BAD,BE2BD,AECD38,SABC39,則AC邊的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某魚塘中養(yǎng)了某種魚5000條,為了估計該魚塘中該種魚的總質(zhì)量,從魚塘中捕撈了3次,取得的數(shù)據(jù)如下:

數(shù)量/

平均每條魚的質(zhì)量/kg

1次捕撈

20

1.6

2次捕撈

15

2.0

3次捕撈

15

1.8

1)求樣本中平均每條魚的質(zhì)量;

2)估計魚塘中該種魚的總質(zhì)量;

3)設(shè)該種魚每千克的售價為14元,求出售該種魚的收入y(元)與出售該種魚的質(zhì)量xkg)之間的函數(shù)關(guān)系,并估計自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線經(jīng)過A(2,0)B(0,﹣2),C(1,0)三點.

1)求拋物線的解析式;

2)若點M為第三象限內(nèi)拋物線上一動點,點M的橫坐標(biāo)為m,△AMB的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值;

3)若點P是拋物線上的動點,點Q是直線y=﹣x上的動點,判斷有幾個位置能夠使得點PQ、B、O為頂點的四邊形為平行四邊形,直接寫出相應(yīng)的點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一人站在兩等高的路燈之間走動,為人在路燈照射下的影子,為人在路燈照射下的影子.當(dāng)人從點走向點時兩段影子之和的變化趨勢是(

A.先變長后變短B.先變短后變長

C.不變D.先變短后變長再變短

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有長為 24m 的籬笆,現(xiàn)一面利用墻(墻的最大可用長度 a 10m)圍成中間隔有一道籬笆的長方形花圃,設(shè)花圃的寬 AB xm,面積為 Sm2

1 S x 的函數(shù)關(guān)系式及 x 值的取值范圍;

2 要圍成面積為 45m2 的花圃,AB 的長是多少米?

3 當(dāng) AB 的長是多少米時,圍成的花圃的面積最大?

查看答案和解析>>

同步練習(xí)冊答案