【題目】我們知道,有理數(shù)包括整數(shù)、有限小數(shù)和無限循環(huán)小數(shù),事實(shí)上,所有的有理數(shù)都可以化為分?jǐn)?shù)形式(整數(shù)可看作分母為1的分?jǐn)?shù)),那么無限循環(huán)小數(shù)如何表示為分?jǐn)?shù)形式呢?請(qǐng)看以下示例:

例:將化為分?jǐn)?shù)形式,

由于,設(shè),

,

②①,解得,于是得.

同理可得,.

根據(jù)以上閱讀,回答下列問題:(以下計(jì)算結(jié)果均用最簡(jiǎn)分?jǐn)?shù)表示)

(類比應(yīng)用)

(1) ;

(2)化為分?jǐn)?shù)形式,寫出推導(dǎo)過程;

(遷移提升)

(3) ;(注,

(拓展發(fā)現(xiàn))

(4)若已知,則 .

【答案】(1;(2) ;(3) ;(4)

【解析】

1)根據(jù)閱讀材料的解答過程,循環(huán)部只有一位數(shù)時(shí),用循環(huán)部的數(shù)除以9即為分?jǐn)?shù),進(jìn)而求出答案.
2)循環(huán)部有兩位數(shù)時(shí),參照閱讀材料的解答過程,可先乘以100,再與原數(shù)相減,即求得答案.
3)循環(huán)部有三位小數(shù)時(shí),用循環(huán)部的3位數(shù)除以999;對(duì)于,可先求對(duì)應(yīng)的分?jǐn)?shù),再除以10,再加上2得答案.
4)觀察,循環(huán)部的數(shù)字順序是一樣的,先求把×1000,把小數(shù)循環(huán)部變成與相同,再減712把整數(shù)部分湊相等,即求出答案.

解:(1
故答案為:
2)設(shè)x=0.272727…,①
100x=27.272727…,②
-①得:99x=27
解得:x=
x=

3


故答案為:,
4
∴等號(hào)兩邊同時(shí)乘以1000得:

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商場(chǎng)正在銷售帳篷和棉被兩種防寒商品,已知購買 頂帳篷和 床棉被共需 元,購買 頂帳篷和 床棉被共需 元.

1)求 頂帳篷和 床棉被的價(jià)格各是多少元?

2)某學(xué)校準(zhǔn)備購買這兩種防寒商品共 件,送給青海玉樹災(zāi)區(qū),要求每種商品都要購買,且?guī)づ竦臄?shù)量多于棉被的數(shù)量,但因?yàn)閷W(xué)校資金不足,購買總金額不能超過 元,請(qǐng)問學(xué)校共有幾種購買方案?(要求寫出具體的購買方案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形中,的角平分線交于點(diǎn),,過點(diǎn)于點(diǎn),,連接,,則__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點(diǎn)C,與AB的延長(zhǎng)線交于點(diǎn)D,DE⊥AD且與AC的延長(zhǎng)線交于點(diǎn)E.

(1)求證:DC=DE;
(2)若tan∠CAB= ,AB=3,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的袋中裝有20個(gè)只有顏色不同的球,其中5個(gè)黃球,8個(gè)黑球,7個(gè)紅球.
(1)求從袋中摸出一個(gè)球是黃球的概率;
(2)現(xiàn)從袋中取出若干個(gè)黑球,攪勻后,使從袋中摸出一個(gè)球是黑球的概率是 ,求從袋中取出黑球的個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C是線段AB上一點(diǎn),M是線段AC的中點(diǎn),N是線段BC的中點(diǎn).

(1)如果AB=20 cm,AM=6 cm,求NC的長(zhǎng);

(2)如果MN=6 cm,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某家電商場(chǎng)計(jì)劃用9萬元從生產(chǎn)廠家購進(jìn)50臺(tái)電視機(jī),已知該廠家生產(chǎn)3種不同型號(hào)的電視機(jī),出廠價(jià)分別為A種每臺(tái)1500元,B種每臺(tái)2100元,C種每臺(tái)2500元.

1)若家電商場(chǎng)同時(shí)購進(jìn)兩種不同型號(hào)的電視機(jī)共50臺(tái),用去9萬元,請(qǐng)你計(jì)算一下商場(chǎng)有哪幾種進(jìn)貨方案?

2)若商場(chǎng)銷售一臺(tái)A種電視機(jī)可獲利150元,銷售一臺(tái)B種電視機(jī)可獲利200元,銷售一臺(tái)C種電視機(jī)可獲利250元,在同時(shí)購進(jìn)兩種不同型號(hào)的電視機(jī)方案中,為了使銷售時(shí)獲利最多,應(yīng)選擇哪種方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知線段AB、CD相交于點(diǎn)O,連接AC、BD,則我們把形如這樣的圖形稱為“8字型”.

(1)求證:∠A+∠C=∠B+D;

(2)如圖2,若∠CAB和∠BDC的平分線APDP相交于點(diǎn)P,且與CD、AB分別相交于點(diǎn)M、N.

以線段AC為邊的“8字型”有   個(gè),以點(diǎn)O為交點(diǎn)的“8字型”有   個(gè);

若∠B=100°,∠C=120°,求∠P的度數(shù);

若角平分線中角的關(guān)系改為“∠CAP=∠CAB,∠CDP=∠CDB”,試探究∠P∠B、∠C之間存在的數(shù)量關(guān)系,并證明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

閱讀理解:數(shù)軸是學(xué)習(xí)有理數(shù)的一種重要工具,任何有理數(shù)都可以用數(shù)軸上的點(diǎn)表示,這樣能夠運(yùn)用數(shù)形結(jié)合的方法解決一些問題.例如,兩個(gè)有理數(shù)在數(shù)軸上對(duì)應(yīng)的點(diǎn)之間的距離可以用較大數(shù)與較小數(shù)的差來表示.例如:

在數(shù)軸上,有理數(shù)31對(duì)應(yīng)的兩點(diǎn)之間的距離為

在數(shù)軸上,有理數(shù)3與-2對(duì)應(yīng)的兩點(diǎn)之間的距離為;

在數(shù)軸上,有理數(shù)-3與-2對(duì)應(yīng)的兩點(diǎn)之間的距離為.

解決問題:如圖所示,已知點(diǎn)表示的數(shù)為-3,點(diǎn)表示的數(shù)為-1,點(diǎn)表示的數(shù)為2.

1)點(diǎn)和點(diǎn)之間的距離為______.

2)若數(shù)軸上動(dòng)點(diǎn)表示的數(shù)為,當(dāng)時(shí),點(diǎn)和點(diǎn)之間的距離可表示為______;當(dāng)時(shí),點(diǎn)和點(diǎn)之間的距離可表示為______.

3)若數(shù)軸上動(dòng)點(diǎn)表示的數(shù)為,點(diǎn)在點(diǎn)和點(diǎn)之間,點(diǎn)和點(diǎn)之間的距離表示為,點(diǎn)和點(diǎn)之間的距離表示為,求(用含的代數(shù)式表示并進(jìn)行化簡(jiǎn))

4)若數(shù)軸上動(dòng)點(diǎn)表示的數(shù)為-2,將點(diǎn)向右移動(dòng)19個(gè)單位長(zhǎng)度,再向左移動(dòng)23個(gè)單位長(zhǎng)度終點(diǎn)為,那么,兩點(diǎn)之間的距離是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案