【題目】已知直角三角形紙片的兩直角邊ACBC的比為34,首先將△ABC如圖1所示折疊,使點C落在AB上,折痕為BD,然后將△ABD如圖2所示折疊,使點B與點D重合,折痕為EF,則sinDEA的值為( 。

A.B.C.D.

【答案】A

【解析】

設(shè)AC3x,BC4x,由勾股定理可求AB5x,由折疊的性質(zhì)可得∠AED2ABD=∠ABC,即可求sinDEA的值.

解:∵ACBC的比為34

∴設(shè)AC3x,BC4x

AB5x

∵將△ABC如圖1所示折疊,使點C落在AB上,

∴∠DBC=∠DBAABC,

∵將△ABD如圖2所示折疊,使點B與點D重合,

∴∠ABD=∠BDE

∴∠AED2ABD=∠ABC

sinDEAsinABC

故選:A

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某社區(qū)招募了40位居民參加眾志成城,抗擊疫情志愿者服務(wù)活動,對志愿者一天的服務(wù)時長進行調(diào)查,由調(diào)查結(jié)果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計圖.

頻數(shù)分布表

組別

時間/小時

頻數(shù)/人數(shù)

A

0≤1

2

B

1≤2

m

C

2≤3

10

D

3≤4

12

E

4≤5

7

F

≥5

4

扇形統(tǒng)計圖

請根據(jù)圖表中的信息解答下列問題:

1)求頻數(shù)分布表中的的值;

2)求B組,C組在扇形統(tǒng)計圖中分別對應扇形的圓心角的度數(shù),并補全扇形統(tǒng)計圖;

3)已知F組的志愿者中,只有1名女志愿者.要從該組中選取兩名志愿者分發(fā)生活物資,請用樹狀圖或列表的方法求2名志愿恰好都是男士的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,∠A=60°,∠C=75°,AB=8,D、EF分別在AB、BCCA上,則DEF的周長最小值是____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為6,E、F分別是邊CD、AD上動點,AEBF交于點G

1)如圖(1),若E為邊CD的中點,AF=2FD,求AG的長.

2)如圖(2),若點FAD上從AD運動,點EDC上從DC運動,兩點同時出發(fā),同時到達各自終點,求在運動過程中,點G運動的路徑長.

3)如圖(3),若E、F分別是邊CD、AD上的中點,BDAE交于點H,求∠FBD的正切值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的半圓交AC于點D,交BC于點E,延長AE至點F,使EF=AE,連接FB、FC

1)求證:四邊形ABFC是菱形;

2)若AD=BE=1,求半圓的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB8,∠CBA30°,以AB為直徑作半圓O,半圓O恰好經(jīng)過點C,點D在線段AB上運動,點E與點D關(guān)于AC對稱,DFDE于點D,并交EC的延長線于點F

1)求證:CECF

2)填空:DF與半圓O相交于點P,則當點D與點O重合時,的長為   

在點D的運動過程中,當EF與半圓O相切時,EF的長為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知雙曲線在第一象限內(nèi)交于兩點,,則扇形的面積是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市銷售AB兩款保溫杯,已知B款保溫杯的銷售單價比A款保溫杯多10元,用480元購買B款保溫杯的數(shù)量與用360元購買A款保溫杯的數(shù)量相同.

1A,B兩款保溫杯的銷售單價各是多少元?

2)由于需求量大,A,B兩款保溫杯很快售完,該超市計劃再次購進這兩款保溫杯共120個,且A款保溫杯的數(shù)量不少于B保溫杯的2倍,A保溫杯的售價不變,B款保溫杯的銷售單價降低10%,兩款保溫杯的進價每個均為20元,應如何進貨才能使這批保溫杯的銷售利潤最大,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為建設(shè)最美恩施,一旅游投資公司擬定在某景區(qū)用茶花和月季打造一片人工花海,經(jīng)市場調(diào)查,購買株茶花與株月季的費用相同,購買株茶花與株月季共需.

1)求茶花和月季的銷售單價;

2)該景區(qū)至少需要茶花月季共株,要求茶花比月季多株,但訂購兩種花的總費用不超過元,該旅游投資公司怎樣購買所需總費用最低,最低費用是多少.

查看答案和解析>>

同步練習冊答案