【題目】如圖,在△ABC中,AE平分∠BAC交BC于點E,D是AB邊上一動點,連接CD交AE于點P,連接BP.已知AB =6cm,設(shè)B,D兩點間的距離為xcm,B,P兩點間的距離為y1cm,A,P兩點間的距離為y2cm.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,分別對函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小明的探究過程,請補(bǔ)充完整:
(1)按照下表中自變量x的值進(jìn)行取點、畫圖、測量,分別得到了y1,與x的幾組對應(yīng)值:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 2.49 | 2.64 | 2.88 | 3.25 | 3.80 | 4.65 | 6.00 |
y2/cm | 4.59 | 4.24 | 3.80 | 3.25 | 2.51 | 0.00 |
(2)在同一平面直角坐標(biāo)系xOy中,描出補(bǔ)全后的表中各組數(shù)值所對應(yīng)的點(x,y1),(x,),并畫出函數(shù)y1,的圖象;
(3)結(jié)合函數(shù)圖象,回答下列問題:
①當(dāng)AP=2BD時,AP的長度約為 cm;
②當(dāng)BP平分∠ABC時,BD的長度約為 cm.
【答案】(1)1.5;(2)詳見解析;(3)答案不唯一,如:①3.86;②3
【解析】
(1)用光滑的曲線連接y2圖象現(xiàn)有的點,在圖象上,測量出x=5時,y的值即可;
(2)描點連線即可繪出函數(shù)圖象;
(3)①當(dāng)AP=2BD時,即y2=2x,在圖象上畫出直線y=2x,該圖象與y2的交點即為所求;
②從表格數(shù)據(jù)看,當(dāng)x=3時,y1=y2=3.25,故當(dāng)BP平分∠ABC時,此時點P是△ABC的內(nèi)心,故點D在AB的中點,即可求解.
解:(1)根據(jù)測量結(jié)果得到:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 2.49 | 2.64 | 2.88 | 3.25 | 3.80 | 4.65 | 6.00 |
y2/cm | 4.59 | 4.24 | 3.80 | 3.25 | 2.51 | 1.5 | 0.00 |
(2)畫出函數(shù)的圖象;
(3)①當(dāng)AP=2BD時,即y2=2x,
在圖象上畫出直線y=2x,該圖象與y2的交點即為所求,即圖中空心點所示,
空心點的縱坐標(biāo)為3.86,
②從表格數(shù)據(jù)看,當(dāng)x=3時,y1=y2=3.25,
即點D在AB中點時,y1=y2,即此時點P在AB的中垂線上,則點C在AB的中垂線上,則△ABC為等腰三角形,
故當(dāng)BP平分∠ABC時,此時點P是△ABC的內(nèi)心,故點D在AB的中點,
故答案可以為:①3.86;②3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個芭蕾舞團(tuán)演員的身高(單位:cm)如下表:
甲 | 164 | 164 | 165 | 165 | 166 | 166 | 167 | 167 |
乙 | 163 | 163 | 165 | 165 | 166 | 166 | 168 | 168 |
兩組芭蕾舞團(tuán)演員身高的方差較小的是______.(填“甲”或“乙”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,將直角的頂點E放在正方形ABCD的對角線AC上,使角的一邊交CD于點F,另一邊交CB或其延長線于點G,求的值;
(2)如圖,將(1)中的“正方形ABCD”改成“矩形ABCD”,其他條件不變.若AB=m,BC=n,試求的值;
(3)如圖,將直角頂點E放在矩形ABCD的對角線交點,EF、EG分別交CD與CB于點F、G,且EC平分∠FEG.若AB=2,BC=4,直接寫出EG、EF 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)白色小正方形個數(shù)按等于1,2,3,…時的某種規(guī)律增加時,由白色小正方形和黑色小正方形組成的圖形分別如圖所示,則第個圖形中白色小正方形和黑色小正方形的個數(shù)總和等于______.(用表示,是正整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機(jī)構(gòu)對某地互聯(lián)網(wǎng)行業(yè)從業(yè)情況進(jìn)行調(diào)查統(tǒng)計,得到當(dāng)?shù)鼗ヂ?lián)網(wǎng)行業(yè)從業(yè)人員年齡分布統(tǒng)計圖和當(dāng)?shù)?/span>90后從事互聯(lián)網(wǎng)行業(yè)崗位分布統(tǒng)計圖:
互聯(lián)網(wǎng)行業(yè)從業(yè)人員年齡分布統(tǒng)計圖 90后從事互聯(lián)網(wǎng)行業(yè)崗位分布圖
對于以下四種說法,你認(rèn)為正確的是_____ (寫出全部正確說法的序號).
①在當(dāng)?shù)鼗ヂ?lián)網(wǎng)行業(yè)從業(yè)人員中,90后人數(shù)占總?cè)藬?shù)的一半以上
②在當(dāng)?shù)鼗ヂ?lián)網(wǎng)行業(yè)從業(yè)人員中,80前人數(shù)占總?cè)藬?shù)的13%
③在當(dāng)?shù)鼗ヂ?lián)網(wǎng)行業(yè)中,從事技術(shù)崗位的90后人數(shù)超過總?cè)藬?shù)的20%
④在當(dāng)?shù)鼗ヂ?lián)網(wǎng)行業(yè)中,從事設(shè)計崗位的90后人數(shù)比80前人數(shù)少
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某人開車從家出發(fā)去植物園游玩,設(shè)汽車行駛的路程為S(千米),所用時間為t(分),S與t之間的函數(shù)關(guān)系如圖所示.若他早上8點從家出發(fā),汽車在途中停車加油一次,則下列描述中,不正確的是( )
A.汽車行駛到一半路程時,停車加油用時10分鐘
B.汽車一共行駛了60千米的路程,上午9點5分到達(dá)植物園
C.加油后汽車行駛的速度為60千米/時
D.加油后汽車行駛的速度比加油前汽車行駛的速度快
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AE平分∠BAC交BC于點E,D是AB邊上一動點,連接CD交AE于點P,連接BP.已知AB =6cm,設(shè)B,D兩點間的距離為xcm,B,P兩點間的距離為y1cm,A,P兩點間的距離為y2cm.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,分別對函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小明的探究過程,請補(bǔ)充完整:
(1)按照下表中自變量x的值進(jìn)行取點、畫圖、測量,分別得到了y1,與x的幾組對應(yīng)值:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 2.49 | 2.64 | 2.88 | 3.25 | 3.80 | 4.65 | 6.00 |
y2/cm | 4.59 | 4.24 | 3.80 | 3.25 | 2.51 | 0.00 |
(2)在同一平面直角坐標(biāo)系xOy中,描出補(bǔ)全后的表中各組數(shù)值所對應(yīng)的點(x,y1),(x,),并畫出函數(shù)y1,的圖象;>
(3)結(jié)合函數(shù)圖象,回答下列問題:
①當(dāng)AP=2BD時,AP的長度約為 cm;
②當(dāng)BP平分∠ABC時,BD的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某制藥廠需要緊急生產(chǎn)一批能有效緩解“新冠肺炎”的藥品,要求必須在12天(含12天)內(nèi)完成.為了加快生產(chǎn),車間采取工人加班,機(jī)器不停的生產(chǎn)方式,這樣每天藥品的產(chǎn)量(噸)是時間(天)的一次函數(shù),且滿足如下表中所對應(yīng)的數(shù)量關(guān)系.由于機(jī)器負(fù)荷運轉(zhuǎn)產(chǎn)生損耗,平均生產(chǎn)每噸藥品的成本(元)與時間(天)的關(guān)系滿足如圖所示的函數(shù)圖象.
時間(天) | 2 | 4 |
每天產(chǎn)量(噸) | 24 | 28 |
(1)求藥品每天的產(chǎn)量(噸)與時間(天)之間的函數(shù)關(guān)系式;
(2)當(dāng)時,直接寫出(元)與時間(天)的函數(shù)關(guān)系是 ;
(3)若這批藥品的價格為1400元/噸,每天的利潤設(shè)為元,求哪一天的利潤最高,最高利潤是多少?(利潤售價成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,,,是上一動點,過作的垂線交于,將折疊得到,延長交于,連接.
(1)求證:;
(2)當(dāng)時,證明是等腰三角形;
(3)若,,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com