【題目】“龜兔首次賽跑”之后,輸了比賽的兔子沒有氣餒,總結(jié)反思后,和烏龜約定再賽一場.圖中的函數(shù)圖象刻畫了“龜兔再次賽跑”的故事(x表示烏龜從起點出發(fā)所行的時間,y1表示烏龜所行的路程,y2表示兔子所行的路程).有下列說法:①“龜兔再次賽跑”的路程為1 000米;②兔子和烏龜同時從起點出發(fā);③烏龜在途中休息了10分鐘.其中正確的說法是_________________(把你認為正確說法的序號都填上).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】亮亮和穎穎住在同一幢住宅樓,兩人準備用測量影子的方法測算其樓高,但恰逢陰天,于是兩人商定改用下面方法:如圖,亮亮蹲在地上,穎穎站在亮亮和樓之間,兩人適當(dāng)調(diào)整自己的位置,當(dāng)樓的頂部 , 穎穎的頭頂及亮亮的眼睛恰在一條直線上時,兩人分別標定自己的位置 , . 然后測出兩人之間的距離 , 穎穎與樓之間的距離( , , 在一條直線上),穎穎的身高 , 亮亮蹲地觀測時眼睛到地面的距離 . 你能根據(jù)以上測量數(shù)據(jù)幫助他們求出住宅樓的高度嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一塊矩形木板,木工采用如圖的方式,在木板上截出兩個面積分別為18dm2和32dm2的正方形木板.
(1)求剩余木料的面積.
(2)如果木工想從剩余的木料中截出長為1.5dm,寬為ldm的長方形木條,最多能截出 塊這樣的木條.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】夏季空調(diào)銷售供不應(yīng)求,某空調(diào)廠接到一份緊急訂單,要求在10天內(nèi)(含10天)完成任務(wù),為提高生產(chǎn)效率,工廠加班加點,接到任務(wù)的第一天就生產(chǎn)了空調(diào)42臺,以后每天生產(chǎn)的空調(diào)都比前一天多2臺,由于機器損耗等原因,當(dāng)日生產(chǎn)的空調(diào)數(shù)量達到50臺后,每多生產(chǎn)一臺,當(dāng)天生產(chǎn)的所有空調(diào),平均每臺成本就增加20元.
(1)設(shè)第x天生產(chǎn)空調(diào)y臺,直接寫出y與x之間的函數(shù)解析式,并寫出自變量x的取值范圍.
(2)若每臺空調(diào)的成本價(日生產(chǎn)量不超過50臺時)為2000元,訂購價格為每臺2920元,設(shè)第x天的利潤為W元,試求W與x之間的函數(shù)解析式,并求工廠哪一天獲得的利潤最大,最大利潤是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1) 發(fā)現(xiàn):
如圖1,點是線段外一動點,且,.當(dāng)點位于 時,線段的長取得最大值;最大值為 (用含,的式子表示).
(2)應(yīng)用:
如圖2,點為線段外一動點,,,分別以,為邊在外部作等邊和等邊,連接,.
①求證:;
②直接寫出線段長的最大值.
(3)拓展:
如圖3,在平面直角坐標系中,點,點,點為線段外一動點,,,,請直接寫出線段長的最大值及此時點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有一個內(nèi)角為90°,且對角線相等的四邊形稱為準矩形.
(1)①如圖1,準矩形ABCD中,∠ABC=90°,若AB=2,BC=3,則BD= ;
②如圖2,直角坐標系中,A(0,3),B(5,0),若整點P使得四邊形AOBP是準矩形,則點P的坐標是 ;(整點指橫坐標、縱坐標都為整數(shù)的點)
(2)如圖3,正方形ABCD中,點E、F分別是邊AD、AB上的點,且CF⊥BE,求證:四邊形BCEF是準矩形;
(3)已知,準矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,當(dāng)△ADC為等腰三角形時,請直接寫出這個準矩形的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的弦,OP⊥OA交AB于點P,過點B的直線交OP的延長線于點C,且CP=CB.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為3,OP=1,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖示,若△ABC內(nèi)一點P滿足∠PAC=∠PBA=∠PCB,則點P為△ABC的布洛卡點.三角形的布洛卡點是法國數(shù)學(xué)家和教育家克洛爾于1816年首次發(fā)現(xiàn),但他的發(fā)現(xiàn)并未被當(dāng)時的人們所注意,1875年,布洛卡點被一個數(shù)學(xué)愛好者法國軍官布洛卡重新發(fā)現(xiàn),并用他的名字命名.問題:已知在等腰直角三角形DEF中,∠EDF=90°,若點Q為△DEF的布洛卡點,DQ=1,則EQ+FQ=。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com