【題目】如圖所示的是一種盛裝葡萄酒的瓶子,現(xiàn)量得瓶塞AB與標簽CD的高度之比為2:3,且瓶子底部DE=AB,CBD的中點,又量得AE=300mm,設DE的長為

(1)用含的式于直接表示出AB、BC的長;

(2)求標簽CD的高度。

【答案】(1) AB=2xmm,BC=3xmm,(2) 100mm

【解析】

1)根據(jù)ABBC=23,且DE=AB,可得答案;
2)根據(jù)線段中點的性質(zhì),得CD=BC=3x,根據(jù)線段的和差,可得關(guān)于x的方程,根據(jù)解方程,可得答案.

解:(1)由DE=AB,DE的長為xmm,得:AB=2DE=2xmm
ABBC=23,AB=2xmm,得BC=3xmm

2)由CBD的中點,得CD=BC=3xmm
由線段和差,得AE=AB+BC+CD+DE=300
2x+3x+3x+x=300,
解得x=,
CD=3x=3×=100mm

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一個的方格棋盤的格里放了一枚棋子,如果規(guī)定棋子每步只能向上、向下或向左、向右走一格,那么這枚棋子走如下的步數(shù)后能到達格的是( ).

A. 7 B. 14 C. 21 D. 28

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊△ABC中,AB=6,NAB上一點,且AN=2,∠BAC的平分線交BC于點D,MAD上的動點,連結(jié)BM,MN,則BM+MN的最小值是( 。

A. 8 B. 10 C. D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形網(wǎng)格中,小正方形的邊長為1,△ABC的頂點在格點上.

(1)判斷△ABC是否是直角三角形?并說明理由.

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角△ABC內(nèi)接于⊙O,點D是直角△ABC斜邊AB上的一點,過點D作AB的垂線交AC于E,過點C作∠ECP=∠AED,CP交DE的延長線于點P,連結(jié)PO交⊙O于點F.

(1)求證:PC是⊙O的切線;
(2)若PC=3,PF=1,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,ABC中,CDABD,且BD : AD : CD2 : 3 : 4,

1)求證:AB=AC;

2)已知SABC40cm2,如圖2,動點M從點B出發(fā)以每秒1cm的速度沿線段BA向點A 運動,同時動點N從點A出發(fā)以相同速度沿線段AC向點C運動,當其中一點到達終點時整個運動都停止. 設點M運動的時間為t(秒),

①若DMN的邊與BC平行,求t的值;

②若點E是邊AC的中點,問在點M運動的過程中,MDE能否成為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°AC=4

1)若BC=2,求AB的長;

2)若BC=a,AB=c,求代數(shù)式(c22﹣(a+42+4c+2a+3)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等腰三角形ABC的底邊長BC=20cm,DAC上的一點,且BD=16cm,CD=12cm

1)求證:BDAC;

2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,OA⊥OB,AB⊥x軸于點C,點A( ,1)在反比例函數(shù)y= (x≠0)的圖象上.

(1)求反比例函數(shù)y= (x≠0)的解析式和點B的坐標;
(2)若將△BOA繞點B按逆時針方向旋轉(zhuǎn)60°得到△BDE(點O與點D是對應點),補全圖形,直接寫出點E的坐標,并判斷點E是否在該反比例函數(shù)的圖象上,說明理由.

查看答案和解析>>

同步練習冊答案