【題目】小華和小麗兩人玩數(shù)字游戲,先由小麗心中任意想一個(gè)數(shù)字記為x,再由小華猜小麗剛才想的數(shù)字,把小華猜的數(shù)字記為y,且他們想和猜的數(shù)字只能在1,2,3,4這四個(gè)數(shù)中.
(1)請(qǐng)用樹狀圖或列表法表示了他們想和猜的所有情況;
(2)如果他們想和猜的數(shù)相同,則稱他們“心靈相通”.求他們“心靈相通”的概率;
(3)如果他們想和猜的數(shù)字滿足|x﹣y|≤1,則稱他們“心有靈犀”.求他們“心有靈犀”的概率.
【答案】
(1)解:列表法如下:
想數(shù) | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 |
猜數(shù) | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
(2)解:根據(jù)(1)得所以可能的情況有16中,想和猜的數(shù)相同的情況有4種,
∴P(心靈相通)
(3)解:根據(jù)(1)得所以可能的情況有16中,數(shù)字滿足|x﹣y|≤1的情況有10種,
∴P(心有靈犀)=
【解析】(1)由于小華和小麗兩人玩的數(shù)字游戲,小麗心中任意想一個(gè)數(shù)字記為x,再由小華猜小麗剛才想的數(shù)字,把小華猜的數(shù)字記為y,且他們想和猜的數(shù)字只能在1,2,3,4這四個(gè)數(shù)中,由此可以利用列表法表示他們想和猜的所有情況;(2)根據(jù)(1)可以得到所以可能的情況和想和猜的數(shù)相同的情況,然后利用概率的定義即可求解;(3)根據(jù)(1)可以得到所以可能的情況和想和猜的數(shù)字滿足|x﹣y|≤1的情況,然后利用概率即可求解.
【考點(diǎn)精析】關(guān)于本題考查的列表法與樹狀圖法,需要了解當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,若關(guān)于x的不等式f2(x)+af(x)>0恰有兩個(gè)整數(shù)解,則實(shí)數(shù)a的取值范圍是( )
A.(﹣ ,﹣ )
B.[ , )
C.(﹣ ,﹣ ]
D.(﹣1,﹣ ]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E、F分別在邊AD、BC上,且EF∥CD,G為邊AD延長線上一點(diǎn),連接BG,則圖中與△ABG相似的三角形有( )個(gè).
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,I是△ABC內(nèi)一點(diǎn),AI的延長線交BC于點(diǎn)D,交⊙O于E,連接BE,BI.若IB平分∠ABC,EB=EI.
(1)求證:AE平分∠BAC;
(2)若BA= ,OI⊥AD于I,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=4,BC=3,若把直角三角形繞邊AB所在直線旋轉(zhuǎn)一周,則所得幾何體的表面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市招聘教師,對(duì)應(yīng)聘者分別進(jìn)行教學(xué)能力、科研能力、組織能力三項(xiàng)測(cè)試,其中甲、乙兩人的成就如下表:(單位:分)
項(xiàng)目 | 教學(xué)能力 | 科研能力 | 組織能力 |
甲 | 86 | 93 | 73 |
乙 | 81 | 95 | 79 |
(1)根據(jù)實(shí)際需要,將閱讀能力、科研能力、組織能力三項(xiàng)測(cè)試得分按5:3:2的比確定最后成績,若按此成績?cè)诩、乙兩人中錄用一人,誰將被錄用?
(2)按照(1)中的成績計(jì)算方法,將每位應(yīng)聘者的最后成績繪制成如圖所示的頻數(shù)分布直方圖(每組分?jǐn)?shù)段均包含左端數(shù)值,不包含右端數(shù)值),并決定由高分到低分錄用8人.甲、乙兩人能否被錄用?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)的圖象與x軸、y軸分別交于點(diǎn)A,B,與函數(shù)y=x的圖象交于點(diǎn)M,點(diǎn)M的橫坐標(biāo)為2.在x軸上有一點(diǎn)P (a,0)(其中a>2),過點(diǎn)P作x軸的垂線,分別交函數(shù)和y=x的圖象于點(diǎn)C,D.
(1)求點(diǎn)A的坐標(biāo);
(2)若OB=CD,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為2,一個(gè)銳角等于60°的菱形紙片,小芳同學(xué)將一個(gè)三角形紙片的一個(gè)頂點(diǎn)與該菱形頂點(diǎn)D重合,按順時(shí)針方向旋轉(zhuǎn)三角形紙片,使它的兩邊分別交CB、BA(或它們的延長線)于點(diǎn)E、F,∠EDF=60°,當(dāng)CE=AF時(shí),如圖1小芳同學(xué)得出的結(jié)論是DE=DF.
(1)繼續(xù)旋轉(zhuǎn)三角形紙片,當(dāng)CE≠AF時(shí),如圖2小芳的結(jié)論是否成立?若成立,加以證明;若不成立,請(qǐng)說明理由
(2)再次旋轉(zhuǎn)三角形紙片,當(dāng)點(diǎn)E、F分別在CB、BA的延長線上時(shí),如圖3請(qǐng)直接寫出DE與DF的數(shù)量關(guān)系;
(3)連EF,若△DEF的面積為y,CE=x,求y與x的關(guān)系式,并指出當(dāng)x為何值時(shí),y有最小值,最小值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從﹣3,﹣1, ,1,3這五個(gè)數(shù)中,隨機(jī)抽取一個(gè)數(shù),記為a,若數(shù)a使關(guān)于x的不等式組 無解,且使關(guān)于x的分式方程 ﹣ =﹣1有整數(shù)解,那么這5個(gè)數(shù)中所有滿足條件的a的值之和是( )
A.﹣3
B.﹣2
C.﹣
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com