【題目】如圖:一次函數(shù)y=-x+6的圖象與x軸和y軸分別交于點A和B ,再將△ AOB沿直線CD對折,使點A與點B重合。直線CD與x軸交于點C,與AB交于點D.
(1)點A的坐標(biāo)為 ,點B的坐標(biāo)為 。
(2)求OC的長度 ;
(3)在x軸上有一點P,且△PAB是等腰三角形,不需計算過程,直接寫出點P的坐標(biāo).
【答案】(1)點A的坐標(biāo)為(4,0),點B的坐標(biāo)為(0,3)(2)OC=;(3)p點坐標(biāo)為(,0),(-4,0),(-1,0),(9,0)
【解析】試題分析:(1)根據(jù)函數(shù)圖象得出點A和點B的坐標(biāo);(2)設(shè)OC=x,則AC=CB=4-x,根據(jù)Rt△AOB的勾股定理得出x的值,從而得出OC的長度;(3)設(shè)點P的坐標(biāo)為(x,0),然后根據(jù)PA=PB,PA=AB,PB=AB三種情況分別求出x的值,從而得到點P的坐標(biāo).
試題解析:(1)易知A點坐標(biāo)y=0,B點坐標(biāo)x=0,代入y=-x+3可得:A(4,0)B(0,3)
(2)設(shè)OC=x,則AC=CB=4-x
∵∠BOA=900∴OB2+OC2=CB2 ∴32+x2=(4-x)2解得∴OC=
(3)設(shè)P點坐標(biāo)為(x,0),當(dāng)PA=PB時,解得x=
當(dāng)PA=AB時,解得x=9或x=-1;
當(dāng)PB=AB時,解得x=-4.
p點坐標(biāo)為(,0),(-4,0),(-1,0),(9,0)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,動點P在平面直角坐標(biāo)系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),…,按這樣的運動規(guī)律,經(jīng)過第2017次運動后,動點P的坐標(biāo)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2+x﹣1經(jīng)過點P(m,5),則代數(shù)式m2+m+2018的值為( 。
A. 2021B. 2022C. 2023D. 2024
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的BC邊上一點O為圓心,經(jīng)過A,C兩點且與BC邊交于點E,點D為CE的下半圓弧的中點,連接AD交線段EO于點F,若AB=BF.
(1)求證:AB是⊙O的切線;
(2)若CF=4,DF=,求⊙O的半徑r及sinB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2+ax+b+1=0的解為x1=x2=2,則a+b的值為( )
A.-3
B.-1
C.1
D.7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠A,∠B,∠C的對邊分別記為,,,由下列條件不能判定△ABC為直角三角形的是( ).
A.∠A+∠B=∠C
B.∠A∶∠B∶∠C =1∶2∶3
C.
D.∶∶=3∶4∶6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)與一元一次不等式的關(guān)系:一元一次不等式kx+b>0(或kx+b<0)的解集,就是一次函數(shù)的圖象在x軸(或)相應(yīng)的自變量x的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】社會主義核心價值觀知識競賽成績結(jié)果統(tǒng)計如下表:成績在91~100分的為優(yōu)勝者,則優(yōu)勝者的頻率是( 。
分段數(shù)(分) | 61~70 | 71~80 | 81~90 | 91~100 |
人數(shù)(人) | 1 | 19 | 22 | 18 |
A. 35%B. 30%C. 20%D. 10%
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com