“在△ABC中,AB、BC、AC三邊的長分別為數(shù)學(xué)公式數(shù)學(xué)公式、數(shù)學(xué)公式,求這個三角形的面積.”小明同學(xué)在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.我們把上述求△ABC面積的方法叫做構(gòu)圖法.
(1)直接寫出圖①中△ABC的面積;
(2)若△DEF三邊的長分別為數(shù)學(xué)公式、數(shù)學(xué)公式、數(shù)學(xué)公式(a>0),請利用圖②的正方形網(wǎng)格(每個小正方形的邊長為a)畫出相應(yīng)的△DEF,并直接寫出它的面積.
(3)若△MNP三邊的長分別為數(shù)學(xué)公式、數(shù)學(xué)公式、數(shù)學(xué)公式(m>0,n>0,且m≠n),試運(yùn)用構(gòu)圖法求出△MNP的面積.
作業(yè)寶

解:(1)由圖可知S△ABC=3×3-1×2÷2-1×3÷2-2×3÷2=

(2)如圖1:
S△DEF=2a×4a-a×2a-×2a×2a-=3a2;

(3)解:構(gòu)造△MNP如圖2所示,
S△MNP=3m×4n-m×4n-×3m×2n-×2m×2n
=5mn.
分析:(1)△ABC的面積=3×3-1×2÷2-1×3÷2-2×3÷2=;
(2)a是直角邊長為a,2a的直角三角形的斜邊;a是直角邊長為2a,2a的直角三角形的斜邊;a是直角邊長為a,4a的直角三角形的斜邊,把它整理為一個矩形的面積減去三個直角三角形的面積;
(3)結(jié)合(1),(2)易得此三角形的三邊分別是直角邊長為m,4n的直角三角形的斜邊;直角邊長為3m,2n的直角三角形的斜邊;直角邊長為2m,2n的直角三角形的斜邊.同樣把它整理為一個矩形的面積減去三個直角三角形的面積.
點(diǎn)評:本題考查的是勾股定理,此題屬開放性的探索問題,關(guān)鍵是結(jié)合網(wǎng)格用矩形及容易求得面積的直角三角形表示出所求三角形的面積進(jìn)行解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寧德質(zhì)檢)如圖,在△ABC中,AB=AC=6,點(diǎn)0為AC的中點(diǎn),OE⊥AB于點(diǎn)E,OE=
32
,以點(diǎn)0為圓心,OA為半徑的圓交AB于點(diǎn)F.
(1)求AF的長;
(2)連結(jié)FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•襄陽)如圖,在△ABC中,AB=AC,AD⊥BC于點(diǎn)D,將△ADC繞點(diǎn)A順時針旋轉(zhuǎn),使AC與AB重合,點(diǎn)D落在點(diǎn)E處,AE的延長線交CB的延長線于點(diǎn)M,EB的延長線交AD的延長線于點(diǎn)N.
求證:AM=AN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,把△ABC繞著點(diǎn)A旋轉(zhuǎn)至△AB1C1的位置,AB1交BC于點(diǎn)D,B1C1交AC于點(diǎn)E.求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濱湖區(qū)一模)如圖,在△ABC中,AB是⊙O的直徑,∠B=60°,∠C=70°,則∠BOD的度數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•吉林)如圖,在△ABC中,AB=AC,D為邊BC上一點(diǎn),以AB,BD為鄰邊作?ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.

查看答案和解析>>

同步練習(xí)冊答案