【題目】如圖,已知拋物線經(jīng)過(guò)坐標(biāo)原點(diǎn)O和x軸上另一點(diǎn)E,頂點(diǎn)M的坐標(biāo)為(2,4);矩形ABCD的頂點(diǎn)A與點(diǎn)O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3.

(1)求該拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;

(2)將矩形ABCD以每秒1個(gè)單位長(zhǎng)度的速度從如圖所示的位置沿x軸的正方向勻速平行移動(dòng),同時(shí)一動(dòng)點(diǎn)P也以相同的速度從點(diǎn)A出發(fā)向B勻速移動(dòng),設(shè)它們運(yùn)動(dòng)的時(shí)間為t秒(0≤t≤3),直線AB與該拋物線的交點(diǎn)為N(如圖2所示).

①當(dāng)t=時(shí),判斷點(diǎn)P是否在直線ME上,并說(shuō)明理由;

②設(shè)以P、N、C、D為頂點(diǎn)的多邊形面積為S,試問(wèn)S是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1);(2)不在;最大值為

【解析】

試題分析:(1)已知頂點(diǎn)坐標(biāo),又拋物線經(jīng)過(guò)原點(diǎn),用待定系數(shù)可求出拋物線解析式;

(2)①根據(jù)拋物線的對(duì)稱(chēng)性求出E點(diǎn)坐標(biāo),再求出直線ME的解析式,把t知代入驗(yàn)證點(diǎn)P是否在直線ME上;

②最后一問(wèn)設(shè)出P,N坐標(biāo),根據(jù)幾何關(guān)系求出PN,然后分兩種情況討論:(1)PN=0;(2)PN≠0;把求多邊形面積S轉(zhuǎn)化為求函數(shù)最值問(wèn)題.

試題解析:(1)因所求拋物線的頂點(diǎn)M的坐標(biāo)為(2,4),故可設(shè)其關(guān)系式為,又∵拋物線經(jīng)過(guò)O(0,0),∴得,解得a=﹣1,∴所求函數(shù)關(guān)系式為,即

(2)①點(diǎn)P不在直線ME上.根據(jù)拋物線的對(duì)稱(chēng)性可知E點(diǎn)的坐標(biāo)為(4,0),又M的坐標(biāo)為(2,4),設(shè)直線ME的關(guān)系式為y=kx+b.于是得,解得,所以直線ME的關(guān)系式為y=﹣2x+8.

由已知條件易得,當(dāng)t=時(shí),OA=AP=,∴P(,

∵P點(diǎn)的坐標(biāo)不滿足直線ME的關(guān)系式y(tǒng)=﹣2x+8,當(dāng)t=時(shí),點(diǎn)P不在直線ME上.

②S存在最大值.理由如下:

∵點(diǎn)A在x軸的非負(fù)半軸上,且N在拋物線上,∴OA=AP=t,點(diǎn)P,N的坐標(biāo)分別為(t,t)、(t,,∴AN=(0≤t≤3),∴AN﹣AP=()﹣t==t(3﹣t)≥0,∴PN=(ⅰ)當(dāng)PN=0,即t=0或t=3時(shí),以點(diǎn)P,N,C,D為頂點(diǎn)的多邊形是三角形,此三角形的高為AD,∴S=DCAD=×3×2=3.

(ⅱ)當(dāng)PN≠0時(shí),以點(diǎn)P,N,C,D為頂點(diǎn)的多邊形是四邊形

∵PN∥CD,AD⊥CD,∴S=(CD+PN)AD= ==,其中(0<t<3),由a=﹣1,0<<3,此時(shí)S最大=

綜上所述,當(dāng)t=時(shí),以點(diǎn)P,N,C,D為頂點(diǎn)的多邊形面積有最大值,這個(gè)最大值為

說(shuō)明:(ⅱ)中的關(guān)系式,當(dāng)t=0和t=3時(shí)也適合.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表是籃球運(yùn)動(dòng)員在一些籃球比賽中罰球的記錄:

罰球數(shù)

4

5

6

3

3

5

罰中球數(shù)

3

4

5

2

3

3


(1)計(jì)算表中“罰中頻率不低于0.8”的有幾次;
(2)根據(jù)這些罰球頻率,估計(jì)該運(yùn)動(dòng)員的罰中球概率(精確0.01)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知線段AB,點(diǎn)C是它的黃金分割點(diǎn)(ACBC)設(shè)以AC為邊的正方形的面積為S1,以AB、CB分別為長(zhǎng)和寬的矩形的面積為S2,則S1S2關(guān)系正確的是( )

A.S1S2B.S1S2C.S1S2D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BAC=130°,若MP和QN分別垂直平分AB和AC,則∠PAQ等于(

A.50°
B.75°
C.80°
D.105°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC,∠A=36°,AB的中垂線DE交AC于D,交AB于E,下述結(jié)論:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周長(zhǎng)等于AB+BC;(4)D是AC中點(diǎn).其中正確的命題序號(hào)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】畫(huà)圖表示一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)開(kāi)始向右移動(dòng)3個(gè)單位長(zhǎng)度,再向左移動(dòng)2個(gè)單位長(zhǎng)度;這時(shí)表示什么數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ab、c分別是△ABC的三邊,其中a1,c4,且關(guān)于x的方程x24x+b0有兩個(gè)相等的實(shí)數(shù)根,試判斷△ABC的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察圖形,解答問(wèn)題:

(1)按下表已填寫(xiě)的形式填寫(xiě)表中的空格:

圖①

圖②

圖③

三個(gè)角上三個(gè)數(shù)的積

1×(﹣1)×2=﹣2

(﹣3)×(﹣4)×(﹣5)=﹣60

三個(gè)角上三個(gè)數(shù)的和

1+(﹣1)+2=2

(﹣3)+(﹣4)+(﹣5)=﹣12

積與和的商

﹣2÷2=﹣1


(2)請(qǐng)用你發(fā)現(xiàn)的規(guī)律求出圖④中的數(shù)y和圖⑤中的數(shù)x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn)A(1,3)和B(-3, ).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)點(diǎn)C是平面直角坐標(biāo)系內(nèi)一點(diǎn),BC軸,ADBC于點(diǎn)D,連結(jié)AC,若,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案