如圖所示,P是∠BAC平分線上一點,PM⊥AB于M點,PN⊥AC于N點,則下列結論正確的個數(shù)有

[  ]

(1)PM=PN;(2)AM-AN=0;(3)△APM與△APN面積相等;(4)∠PAN+∠APM=90°.

A.1
B.2
C.3
D.4
答案:D
解析:

由角平分線性質(zhì)可知(1)對,由△PAN≌△PAM可得AM=AN(2)對,三角形全等,面積也相等,所以(3)對,由直角三角形兩銳角互余,(4)也對,故選D


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

22、如圖所示,△ABC是等邊三角形,延長BC至E,延長BA至F,使AF=BE,連接CF、EF,過點F作直線FD⊥CE于D,試發(fā)現(xiàn)∠FCE與∠FEC的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,BC是⊙O直徑,AD⊥BC,垂足為D,
BA
=
AF
,BF與AD交于E,求證:AE=BE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、如圖所示,AB是圓O的直徑,C是BA延長線上一點,CD切圓O于點D,CD=4,CA=2,則圓O的半徑為
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•恩施州)如圖所示,AB是⊙O的直徑,AE是弦,C是劣弧AE的中點,過C作CD⊥AB于點D,CD交AE于點F,過C作CG∥AE交BA的延長線于點G.
(1)求證:CG是⊙O的切線.
(2)求證:AF=CF.
(3)若∠EAB=30°,CF=2,求GA的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

有這樣一道題:
如圖所示,已知BA∥CD,BE平分∠ABC,CE平分∠BCD,試判斷∠1與∠2的度數(shù)有怎樣的關系,并說明理由.小麗的判斷是∠1與∠2互余,這是正確的,但是她寫的說明不完整,請你給予補充.
因為BE是∠ABC的平分線,所以∠2=
1
2
∠ABC
∠ABC
.又因為CE是∠BCD的平分線,所以∠1=
1
2
∠BCD
∠BCD
,于是∠1+∠2=
1
2
∠ABC
∠ABC
+
∠BCD
∠BCD
).
而AB∥CD,根據(jù)兩直線平行,同旁內(nèi)角互補,得
∠ABC
∠ABC
+
∠BCD
∠BCD
=
180°
180°
,所以∠1+∠2=90°,即∠1與∠2互余.

查看答案和解析>>

同步練習冊答案