【題目】某服裝店購(gòu)進(jìn)一批秋衣,價(jià)格為每件30元.物價(jià)部門規(guī)定其銷售單價(jià)不高于每件60元,不低于每件30元.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):日銷售量y(件)是銷售單價(jià)x(元)的一次函數(shù),且當(dāng)x=60時(shí),y=80;x=50時(shí),y=100.在銷售過(guò)程中,每天還要支付其他費(fèi)用450元.
(1)求出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(2)求該服裝店銷售這批秋衣日獲利w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式.
(3)當(dāng)銷售單價(jià)為多少元時(shí),該服裝店日獲利最大?最大獲利是多少元?

【答案】
(1)解:設(shè)y=kx+b,根據(jù)題意得 ,

解得:k=﹣2,

故y=﹣2x+200(30≤x≤60);


(2)解:W=(x﹣30)(﹣2x+200)﹣450=﹣2x2+260x﹣6450=﹣2(x﹣65)2+2000;
(3)解:W=﹣2(x﹣65)2+2000,

∵30≤x≤60,

∴x=60時(shí),w有最大值為1950元,

∴當(dāng)銷售單價(jià)為60元時(shí),該服裝店日獲利最大,為1950元.


【解析】(1)根據(jù)y與x成一次函數(shù)解析式,設(shè)為y=kx+b,把x與y的兩對(duì)值代入求出k與b的值,即可確定出y與x的解析式,并求出x的范圍即可;(2)根據(jù)利潤(rùn)=單價(jià)×銷售量列出W關(guān)于x的二次函數(shù)解析式即可;(3)利用二次函數(shù)的性質(zhì)求出W的最大值,以及此時(shí)x的值即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)x<0時(shí),反比例函數(shù) 的圖像(
A.在第二象限內(nèi),y隨x的增大而減小
B.在第二象限內(nèi),y隨x的增大而增大
C.在第三象限內(nèi),y隨x的增大而減小
D.在第三象限內(nèi),y隨x的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=﹣x2+2x+m.
(1)如果二次函數(shù)的圖像與x軸有兩個(gè)交點(diǎn),求m的取值范圍;
(2)如圖,二次函數(shù)的圖像過(guò)點(diǎn)A(3,0),與y軸交于點(diǎn)B,求直線AB與這個(gè)二次函數(shù)的解析式;

(3)在直線AB上方的拋物線上有一動(dòng)點(diǎn)D,當(dāng)D與直線AB的距離DE最大時(shí),求點(diǎn)D的坐標(biāo),并求DE最大距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn)Q到圖形W上每一個(gè)點(diǎn)的距離的最小值稱為點(diǎn)Q到圖形W的距離.例如正方形ABCD滿足A(1,0),B(2,0),C(2,1),D(1,1),那么點(diǎn)O(0,0)到正方形ABCD的距離為1.

(1)如果⊙P是以(3,4)為圓心,1為半徑的圓,那么點(diǎn)O(0,0)到⊙P的距離為;
(2)求點(diǎn)M(3,0)到直線y=2x+1的距離;
(3)如果點(diǎn)N(0,a)到直線y=2x+1的距離為3,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】趙爽弦圖是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成的一個(gè)大正方形,如圖所示,若這四個(gè)全等直角三角形的兩條直角邊分別平行于x軸和y軸,大正方形的頂點(diǎn)B1、C1、C2、C3、…、Cn在直線y=﹣ x+ 上,頂點(diǎn)D1、D2、D3、…、Dn在x軸上,則第n個(gè)陰影小正方形的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=2x+a與y= (a≠0)的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有四張背面完全相同的卡片A,B,C,D,小偉將這四張卡片背面朝上洗勻后摸出一張,放回洗勻后再摸一張.

(1)用樹(shù)狀圖(或列表法)表示兩次摸出卡片所有可能出現(xiàn)的結(jié)果(卡片可用A,B,C,D表示);
(2)求摸出兩張卡片所表示的幾何圖形是軸對(duì)稱圖形而不是中心對(duì)稱圖形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某工藝品廠生產(chǎn)一款工藝品、已知這款工藝品的生產(chǎn)成本為每件60元. 經(jīng)市場(chǎng)調(diào)研發(fā)現(xiàn):該款工藝品每天的銷售量y(件)與售價(jià)x(元)之間存在著如下表所示的一次函數(shù)關(guān)系.

售價(jià)x(元)

70

90

銷售量y(件)

3000

1000

(利潤(rùn)=(售價(jià)﹣成本價(jià))×銷售量)
(1)求銷售量y(件)與售價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)你認(rèn)為如何定價(jià)才能使工藝品廠每天獲得的利潤(rùn)為40000元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在研究相似問(wèn)題時(shí),甲、乙同學(xué)的觀點(diǎn)如下: 甲:將邊長(zhǎng)為3、4、5的三角形按圖1的方式向外擴(kuò)張,得到新三角形,它們的對(duì)應(yīng)邊間距為1,則新三角形與原三角形相似.
乙:將鄰邊為3和5的矩形按圖2的方式向外擴(kuò)張,得到新的矩形,它們的對(duì)應(yīng)邊間距均為1,則新矩形與原矩形不相似.
對(duì)于兩人的觀點(diǎn),下列說(shuō)法正確的是(

A.兩人都對(duì)
B.兩人都不對(duì)
C.甲對(duì),乙不對(duì)
D.甲不對(duì),乙對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案