【題目】如圖1,直線AB分別與x軸、y軸交于A、B兩點,OC平分∠AOB交AB于點C,點D為線段AB上一點,過點D作DE//OC交y軸于點E,已知AO=m,BO=n,且m、n滿足n2-12+36+|n-2m|=0.
(1)求A、B兩點的坐標?
(2)若點D為AB中點,求OE的長?
(3)如圖2,若點P(x,-2x+6)為直線AB在x軸下方的一點,點E是y軸的正半軸上一動點,以E為直角頂點作等腰直角△PEF,使點F在第一象限,且F點的橫、縱坐標始終相等,求點P的坐標.
【答案】
(1)解:∵
∴
∵ ,
∴ ,
∴ m=3,n=6
∴點A為(3,0),點B為(0,6)
(2)解:延長DE交x軸于點F,延長FD到點G,使得DG=DF,連接BG
設OE=x
∵OC平分∠AOB
∴∠BOC=∠AOC=45°
∵DE∥OC
∴∠EFO=∠FEO=∠BEG=∠BOC=∠AOC=45°
∴OE=OF=x
在△ADF和△BDG中
∵
∴△ADF≌△BDG(SAS)
∴BG=AF=3+x,∠G=∠AFE=45°
∴∠G=∠BEG=45°
∴BG=BE=6-x
∴6-x=3+x
解得:x=1.5
∴OE=1.5
(3)解:分別過點F、P作FM⊥y軸于點M,PN⊥y軸于點N
設點E為(0,m)
∵點P的坐標為(x,-2x+6)
則PN=x,EN=m+2x-6
∵∠PEF=90°
∴∠PEN+∠FEM=90°
∵FM⊥y軸
∴∠MFE+∠FEM=90°
∴∠PEN=∠MFE
在△EFM和△PEN中
∵
∴△EFM≌△PEN(AAS)
∴ME=NP=x,F(xiàn)M=EN=m+2x-6
∴點F為(m+2x-6,m+x)
∵F點的橫坐標與縱坐標相等
∴m+2x-6=m+x
解得:x=6
∴點P為(6,-6)
【解析】(1)根據(jù)題意得到平方+絕對值=0,由平方和絕對值的非負性,得到n-6=0,n-2m=0;得到點A、點B的坐標;(2)根據(jù)角平分線和平行線的性質,再由SAS得到△ADF≌△BDG,得到對應邊、對應角相等,求出OE的值;(3)根據(jù)圖形和已知條件,由AAS得到△EFM≌△PEN,得到對應邊相等,由F點的橫坐標與縱坐標相等,求出點P的坐標.
科目:初中數(shù)學 來源: 題型:
【題目】“表1”為初三(1)班全部43名同學某次數(shù)學測驗成績的統(tǒng)計結果,則下列說法正確的是( )
成績(分) | 70 | 80 | 90 |
男生(人) | 5 | 10 | 7 |
女生(人) | 4 | 13 | 4 |
A.男生的平均成績大于女生的平均成績
B.男生的平均成績小于女生的平均成績
C.男生成績的中位數(shù)大于女生成績的中位數(shù)
D.男生成績的中位數(shù)小于女生成績的中位數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一只盒子中有紅球m個,白球6個,黑球n個,每個球除顏色外都相同,從中任取一個球,取得是白球的概率與不是白球的概率相同,那么m與n的關系是_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店第一次用600元購進2B鉛筆若干支,第二次又用600元購進該款鉛筆,但這次每支的進價是第一次進價的 倍,購進數(shù)量比第一次少了30支.
(1)求第一次每支鉛筆的進價是多少元?
(2)若要求這兩次購進的鉛筆按同一價格全部銷售完畢后獲利不低于420元,問每支售價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△ABC中,BO,CO分別是∠ABC和∠ACB的平分線,過O點的直線分別交AB、AC于點D、E,且DE∥BC.若AB=6cm,AC=8cm,則△ADE的周長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com