【題目】某水產(chǎn)養(yǎng)殖戶,一次性收購了小龍蝦,計(jì)劃養(yǎng)殖一段時(shí)間后再出售.已知每天放養(yǎng)的費(fèi)用相同,放養(yǎng)天的總成本為萬元;放養(yǎng)天的總成本為萬元(總成本=放養(yǎng)總費(fèi)用+收購成本).

1)設(shè)每天的放養(yǎng)費(fèi)用是萬元,收購成本為萬元,求的值;

2)設(shè)這批小龍蝦放養(yǎng)天后的質(zhì)量為),銷售單價(jià)為/.根據(jù)以往經(jīng)驗(yàn)可知:mt的函數(shù)關(guān)系式為,yt的函數(shù)關(guān)系如圖所示

①求yt的函數(shù)關(guān)系式;

②設(shè)將這批小龍蝦放養(yǎng)t天后一次性出售所得利潤(rùn)為W元,求當(dāng)為何值時(shí),W最大?并求出W的最大值.(利潤(rùn)=銷售總額-總成本)

【答案】1a的值為004,b的值為30;(2)①;②當(dāng)t55天時(shí),w最大,最大值為180250

【解析】

1)由放養(yǎng)10天的總成本為30.4萬元;放養(yǎng)20天的總成本為30.8萬元可得答案;
2)①分0≤t≤5050<t≤100兩種情況,結(jié)合函數(shù)圖象利用待定系數(shù)法求解可得;
②就以上兩種情況,根據(jù)利潤(rùn)=銷售總額-總成本列出函數(shù)解析式,依據(jù)一次函數(shù)性質(zhì)和二次函數(shù)性質(zhì)求得最大值即可得.

解:(1)由題意,得

解得

的值為004,的值為30

(2)①當(dāng)時(shí), 設(shè)的函數(shù)關(guān)系式為,

過點(diǎn)(0,15)(50,25),

解得

的函數(shù)關(guān)系式為

當(dāng)時(shí), 設(shè)的函數(shù)關(guān)系式為,

過點(diǎn)(50,25)(100,20),

解得

的函數(shù)關(guān)系式為

的函數(shù)關(guān)系式為

②當(dāng)時(shí),

36000,

∴當(dāng)時(shí),最大值=180000

當(dāng)時(shí),

-100,

∴當(dāng)時(shí),最大值=180250

綜上所述,當(dāng)天時(shí),最大,最大值為180250元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,△ABC中,∠C=90°,請(qǐng)用直尺和圓規(guī)作一條直線,把△ABC分割成兩個(gè)等腰三角形(不寫作法,但須保留作圖痕跡).

2)已知內(nèi)角度數(shù)的兩個(gè)三角形如圖2,圖3所示.請(qǐng)你判斷,能否分別畫一條直線把它們分割成兩個(gè)等腰三角形?若能,請(qǐng)寫出分割成的兩個(gè)等腰三角形頂角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料后,解答問題.分母中含有未知數(shù)的不等式叫分式不等式.如:,等.那么如何求出它們的解集呢?根據(jù)我們學(xué)過的有理數(shù)除法法則可知,兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),其字母表達(dá)式為:

1)若,,則,若,則;

2)若,,則,若,,則.反之,(1)若,則

3)若,則_______________________.根據(jù)上述規(guī)律,求不等式,的解集,方法如下:

由上述規(guī)律可知,不等式,轉(zhuǎn)化為①或②

解不等式組①得,解不等式組②得

∴不等式,的解集是

根據(jù)上述材料,解決以下問題:

A、求不等式的解集

B、乘法法則與除法法則類似,請(qǐng)你類比上述材料內(nèi)容,運(yùn)用乘法法則,解決以下問題:求不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售一種高檔蔬菜莼菜,其進(jìn)價(jià)為16/kg.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):該商品的日銷售量y(kg)是售價(jià)x(/kg)的一次函數(shù),其售價(jià)、日銷售量對(duì)應(yīng)值如表:

售價(jià)(/)

20

30

40

日銷售量()

80

60

40

(1)關(guān)于的函數(shù)解析式(不要求寫出自變量的取值范圍)

(2)為多少時(shí),當(dāng)天的銷售利潤(rùn) ()最大?最大利潤(rùn)為多少?

(3)由于產(chǎn)量日漸減少,該商品進(jìn)價(jià)提高了/,物價(jià)部門規(guī)定該商品售價(jià)不得超過36/,該商店在今后的銷售中,日銷售量與售價(jià)仍然滿足(1)中的函數(shù)關(guān)系.若日銷售最大利潤(rùn)是864元,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)分別交y軸、x軸于A、B兩點(diǎn),拋物線y=﹣x2+bx+c過A、B兩點(diǎn).

(1)求這個(gè)拋物線的解析式;

(2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個(gè)拋物線于N.求當(dāng)t取何值時(shí),MN有最大值?最大值是多少?

(3)在(2)的情況下,以A、M、N、D為頂點(diǎn)作平行四邊形,求第四個(gè)頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在由邊長(zhǎng)為1的小正方形組成的網(wǎng)格中.點(diǎn) A,BC,D 都在這些小正方形的格點(diǎn)上,AB、CD 相交于點(diǎn)E,則sin∠AEC的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形 ABCD 中,CE⊥BD,AB=4,BC=3,P BD 上一個(gè)動(dòng)點(diǎn),以 P 為圓心,PB 長(zhǎng)半徑作⊙P,⊙P CEBD、BC 交于 FG、H(任意兩點(diǎn)不重合),

1)半徑 BP 的長(zhǎng)度范圍為 ;

2)連接 BF 并延長(zhǎng)交 CD K,若 tan KFC 3 ,求 BP;

3)連接 GH,將劣弧 HG 沿著 HG 翻折交 BD 于點(diǎn) M,試探究是否為定值,若是求出該值,若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了踐行金山銀山,不如綠水青山的環(huán)保理念,重外環(huán)保小組的孩子們參與社區(qū)公益活動(dòng)——收集廢舊電池,活動(dòng)開展一個(gè)月后,經(jīng)過統(tǒng)計(jì)發(fā)現(xiàn),全組成員平均每人收集了顆廢舊電池,其中,收集數(shù)量低于顆的同學(xué)平均每人收集了顆,收集數(shù)量不低于顆的同學(xué)平均每人收集了顆,數(shù)學(xué)王老師發(fā)現(xiàn),若每人再多收集顆,則收集數(shù)量低于顆的同學(xué)平均每人收集了顆,收集數(shù)量不低于顆的同學(xué)平均每人收集了顆,并且,該環(huán)保小組的人數(shù)介于.則該環(huán)保小組有__________人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線L1:y=﹣x2+bx+c經(jīng)過點(diǎn)A(1,0)和點(diǎn)B(5,0)已知直線l的解析式為y=kx﹣5.

(1)求拋物線L1的解析式、對(duì)稱軸和頂點(diǎn)坐標(biāo).

(2)若直線l將線段AB分成1:3兩部分,求k的值;

(3)當(dāng)k=2時(shí),直線與拋物線交于M、N兩點(diǎn),點(diǎn)P是拋物線位于直線上方的一點(diǎn),當(dāng)PMN面積最大時(shí),求P點(diǎn)坐標(biāo),并求面積的最大值.

(4)將拋物線L1在x軸上方的部分沿x軸折疊到x軸下方,將這部分圖象與原拋物線剩余的部分組成的新圖象記為L(zhǎng)2

直接寫出y隨x的增大而增大時(shí)x的取值范圍;

直接寫出直線l與圖象L2有四個(gè)交點(diǎn)時(shí)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案