【題目】如圖,已知反比例函數(shù)y=(x>0)的圖象繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)45°,所得的圖象與原圖象相交于點(diǎn)A,連接OA,以O為圓心,OA為半徑作圓,交函數(shù)y=(x>0)的圖象與點(diǎn)B,則扇形AOB的面積為_____.
【答案】π.
【解析】
如圖,作AD⊥y軸于D,由題意∠AOD=22.5°,根據(jù)對(duì)稱性可知,∠AOB=90°﹣2×22.5°=45°,在OD上取一點(diǎn)F,使得OF=OA,推出∠FOA=∠FAO=22.5°,推出∠AFD=∠DAF=45°,設(shè)DA=DF=a,則,A[a,(1+)a],由點(diǎn)A在上,推出()a2=2,推出,由OA2=a2+(1+)2a2=(4+2)a2,根據(jù)扇形AOB的面積=計(jì)算即可.
解:如圖,作AD⊥y軸于D,由題意∠AOD=22.5°,
根據(jù)對(duì)稱性可知,∠AOB=90°﹣2×22.5°=45°,
在OD上取一點(diǎn)F,使得OF=FA,
∴∠FOA=∠FAO=22.5°,
∴∠AFD=∠DAF=45°,設(shè)DA=DF=a,則,A[a,(1+)a],∵點(diǎn)A在上,
∴()a2=2,
∴
∵OA2=a2+(1+)2a2=(4+2)a2,
∴扇形AOB的面積==π.
故答案為:π.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)一種商品的進(jìn)價(jià)為每件30元,售價(jià)為每件40元.每天可以銷售48件,為盡快減少庫(kù)存,商場(chǎng)決定降價(jià)促銷.
(1)若該商品連續(xù)兩次下調(diào)相同的百分率后售價(jià)降至每件32.4元,求兩次下降的百分率;
(2)經(jīng)調(diào)查,若每降價(jià)0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤(rùn),每件應(yīng)降價(jià)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校初三體育考試選擇項(xiàng)目中,選擇籃球項(xiàng)目和排球項(xiàng)目的學(xué)生比較多.為了解學(xué)生掌握籃球技巧和排球技巧的水平情況,進(jìn)行了抽樣調(diào)查,過(guò)程如下,請(qǐng)補(bǔ)充完整.
收集數(shù)據(jù) 從選擇籃球和排球的學(xué)生中各隨機(jī)抽取16人,進(jìn)行了體育測(cè)試,測(cè)試成績(jī)(十分制)如下:
排球 10 9.5 9.5 10 8 9 9.5 9
7 10 4 5.5 10 9.5 9.5 10
籃球 9.5 9 8.5 8.5 10 9.5 10 8
6 9.5 10 9.5 9 8.5 9.5 6
整理、描述數(shù)據(jù) 按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
4.0≤x<5.5 | 5.5≤x<7.0 | 7.0≤x<8.5 | 8.5≤x<10 | 10 | |
排球 | 1 | 1 | 2 | 7 | 5 |
籃球 |
(說(shuō)明:成績(jī)8.5分及以上為優(yōu)秀,6分及以上為合格,6分以下為不合格.)
分析數(shù)據(jù) 兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:
項(xiàng)目 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
排球 | 8.75 | 9.5 | 10 |
籃球 | 8.81 | 9.25 | 9.5 |
得出結(jié)論
(1)如果全校有160人選擇
(2)初二年級(jí)的小明和小軍看到上面數(shù)據(jù)后,小明說(shuō):排球項(xiàng)目整體水平較高.小軍說(shuō):籃球項(xiàng)目整體水平較高.
你同意______ 的看法,理由為__________.(至少?gòu)膬蓚(gè)不同的角度說(shuō)明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分別與⊙O相切于點(diǎn)E、F、G,過(guò)點(diǎn)D作⊙O的切線交BC于點(diǎn)M,切點(diǎn)為N,則DM的長(zhǎng)為( 。
A. B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩臺(tái)智能機(jī)器人從同一地點(diǎn)出發(fā),沿著筆直的路線行走了450cm.甲比乙先出發(fā),乙出發(fā)一段時(shí)間后速度提高為原來(lái)的2倍.兩機(jī)器人行走的路程y(cm)與時(shí)間x(s)之間的函數(shù)圖像如圖所示,根據(jù)圖像所提供的信息解答下列問(wèn)題:
(1)乙比甲晚出發(fā)_________秒,乙提速前的速度是每秒_________cm, =_________;
(2)已知甲勻速走完了全程,請(qǐng)補(bǔ)全甲的圖象;
(3)當(dāng)x為何值時(shí),乙追上了甲?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=4,將對(duì)角線AC繞對(duì)角線交點(diǎn)O旋轉(zhuǎn),分別交邊AD、BC于點(diǎn)E、F,點(diǎn)P是邊DC上的一個(gè)動(dòng)點(diǎn),且保持DP=AE,連接PE、PF,設(shè)AE=x(0<x<3).
(1)填空:PC= ,FC= 。(用含x的代數(shù)式表示)
(2)求△PEF面積的最小值;
(3)在運(yùn)動(dòng)過(guò)程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x函數(shù)y=(2﹣k)x2﹣2x+k
(1)若此函數(shù)的圖象與坐標(biāo)軸只有2個(gè)交點(diǎn),求k的值.
(2)求證:關(guān)于x的一元二次方程(2﹣k)x2﹣2x+k=0必有一個(gè)根是1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,我市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了如圖兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:
(1)接受問(wèn)卷調(diào)查的學(xué)生共有 人,扇形統(tǒng)計(jì)圖中“了解”部分所對(duì)應(yīng)扇形的圓心角為 °;
(2)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù)為 人;
(3)若從對(duì)校園安全知識(shí)達(dá)到“了解”程度的3個(gè)女生A、B、C和2個(gè)男生M、N中分別隨機(jī)抽取1人參加校園安全知識(shí)競(jìng)賽,請(qǐng)用樹(shù)狀圖或列表法求出恰好抽到女生A的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面的統(tǒng)計(jì)圖反映了我國(guó)最近十年間核電發(fā)電量的增長(zhǎng)情況,根據(jù)統(tǒng)計(jì)圖提供的信息,下列判斷合理的是( 。
A. 2011年我國(guó)的核電發(fā)電量占總發(fā)電量的比值約為1.5%
B. 2006年我國(guó)的總發(fā)電量約為25000億千瓦時(shí)
C. 2013年我國(guó)的核電發(fā)電量占總發(fā)電量的比值是2006年的2倍
D. 我國(guó)的核電發(fā)電量從2008年開(kāi)始突破1000億千瓦時(shí)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com