【題目】如圖①,在等腰中,如圖①,在等腰中,,平分于點.點為線段上一點(不與端點重合),,的延長線交于點,與交于點,連接、、

(1)求證:;

(2)求的度數(shù);

(3)探究線段、之間的數(shù)量關系,并證明.

【答案】1)證明見解析;(2)∠EAP=45°;(3EC=PD

【解析】

1)根據(jù)等腰直角三角形的性質可得CDAB的垂直平分線,根據(jù)垂直平分線的性質可得AP=BP

2)由∠ACE=APE=90°,可得點A,點P,點C,點E四點共圓,可得∠AEP=ACD=45°,即可求∠EAP的度數(shù);

3)過點EEHCD于點H,根據(jù)“AAS”可證APD≌△PEH,可得EH=PD,根據(jù)勾股定理可求EC=EH,即可得EC=PD

證明:(1)∵∠ACB=90°AC=BC,CD平分∠ACB,

CDAB,AD=BD,∠ACD=BCD=CAD=DBC=45°,

CDAB的垂直平分線

AP=BP,

2)∵∠ACE=APE=90°

∴點A,點P,點C,點E四點共圓,

∴∠AEP=ACD=45°,且APEP,

∴∠EAP=45°

3EC=PD,理由如下:

如圖,過點EEHCD于點H,

∵∠EAP=AEP=45°,

AP=PE,

∵∠APE=90°=ADP

∴∠APD+PAD=90°,∠APD+EPH=90°,

∴∠PAD=EPH,且AP=PE,∠EHP=ADP=90°

∴△APD≌△PEHAAS

EH=PD

∵∠ECH=DCB=45°,EHCD

∴∠HEC=HCE=45°

EH=CH

RtECH

EC=PD

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AB6,BC6,∠D30°,點EAB邊的中點,點FBC邊上一動點,將△BEF移沿直線EF折疊,得到△GEF,當FGAC時,BF的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,,它們依次交直線a,b于點A、B、C和點D、EF.

1)如果,,,求DE的長.

2)如果,,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中華文明,源遠流長;中華漢字,寓意深廣.為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學舉行“漢字聽寫”比賽,賽后整理參賽學生的成績,將學生的成績分為AB,CD四個等級,并將結果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,但均不完整.

請你根據(jù)統(tǒng)計圖解答下列問題:

1)參加比賽的學生共有____名;

2)在扇形統(tǒng)計圖中,m的值為____,表示“D等級”的扇形的圓心角為____度;

3)組委會決定從本次比賽獲得A等級的學生中,選出2名去參加全市中學生“漢字聽寫”大賽.已知A等級學生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學生恰好是一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線與雙曲線相交于點

求雙曲線的表達式;

過動點且垂直于x軸的直線與直線及雙曲線的交點分別為BC,當點B位于點C下方時,求出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線與雙曲線相交于點

求雙曲線的表達式;

過動點且垂直于x軸的直線與直線及雙曲線的交點分別為BC,當點B位于點C下方時,求出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知中,D、E分別在ABAC上,下列條件中,能推斷相似的有(  )

①∠BDE+C=180°;②;③;④∠A=90°,且

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】201912月以來,湖北省武漢市部分醫(yī)院陸續(xù)發(fā)現(xiàn)不明原因肺炎病例,現(xiàn)已證實該肺炎為一種新型冠狀病毒感染的肺炎,其傳染性較強.為了有效地避免交叉感染,需要采取以下防護措施:①戴口罩;②勤洗手;③少出門;④重隔離;⑤捂口鼻;⑥謹慎吃.某公司為了解員工對防護措施的了解程度(包括不了解、了解很少、基本了解和很了解),通過網(wǎng)上問卷調查的方式進行了隨機抽樣調查(每名員工必須且只能選擇一項),并將調查結果繪制成如下兩幅統(tǒng)計圖.

請你根據(jù)上面的信息,解答下列問題

1)本次共調查了_______名員工,條形統(tǒng)計圖中________;

2)若該公司共有員工1000名,請你估計不了解防護措施的人數(shù);

3)在調查中,發(fā)現(xiàn)有4名員工對防護措施很了解,其中有3名男員工、1名女員工.若準備從他們中隨機抽取2名,讓其在公司群內普及防護措施,求恰好抽中一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖(1),在中,分別作邊上的高和中線,請用無刻度的直尺完成作圖(保留作圖痕跡);

2)如圖(2),以為旋轉中心,將順時針旋轉度,得到請用無刻度的直尺作出(保留作圖痕跡)

查看答案和解析>>

同步練習冊答案