【題目】閱讀下列推理過程,將空白部分補(bǔ)充完整.

(1)如圖1,∠ABC=∠A1B1C1,BD,B1D1分別是∠ABC,∠A1B1C1的角平分線,對(duì)∠DBC=∠D1B1C1進(jìn)行說理.

理由:因?yàn)锽D,B1D1分別是∠ABC,∠A1B1C1的角平分線

所以∠DBC=   ,∠D1B1C1=   (角平分線的定義)

又因?yàn)?/span>∠ABC=∠A1B1C1

所以∠ABC=∠A1B1C1

所以∠DBC=∠D1B1C1   

(2)如圖2,EF∥AD,∠1=∠2,∠B=40°,求CDG的度數(shù).

因?yàn)镋F∥AD,

所以∠2=      

又因?yàn)?/span>∠1=∠2 (已知)

所以∠1=   (等量代換)

所以AB∥GD(   

所以∠B=      

因?yàn)?/span>B=40°(已知)

所以∠CDG=   (等量代換)

(3)下面是積的乘方的法則“的推導(dǎo)過程,在括號(hào)里寫出每一步的依據(jù).

因?yàn)椋?/span>ab)n=   

=   

=anbn   

所以(ab)n=anbn

【答案】(1)∠ABC,∠A1B1C1,等量代換(2)∠3,兩直線平行,同位角相等,3,內(nèi)錯(cuò)角相等,兩直線平行,CDG,兩直線平行,同位角相等,40°(3)乘方的意義,乘法交換律、乘法結(jié)合律,乘方的意義

【解析】

1)根據(jù)角平分線定義求出即可;

2)根據(jù)平行線的性質(zhì)和已知求出∠1=3,根據(jù)平行線的判定推出DGAB根據(jù)平行線的性質(zhì)得出即可;

3)根據(jù)乘方的意義和乘法運(yùn)算律求出即可

1)理由是BD,B1D1分別是∠ABC,A1B1C1的角平分線∴∠DBC=,D1B1C1=A1B1C1(角平分線的定義)

又因?yàn)椤?/span>ABC=A1B1C1,所以ABC=A1B1C1所以∠DBC=D1B1C1(等量代換)

故答案為:∠ABC,A1B1C1等量代換;

2EFAD,∴∠2=3(兩直線平行,同位角相等)

又∵∠1=2 (已知),所以∠1=3(等量代換)ABGD(內(nèi)錯(cuò)角相等,兩直線平行)∴∠B=CDG(兩直線平行,同位角相等)

∵∠B=40°(已知),∴∠CDG=40°(等量代換)

故答案為:∠3,兩直線平行,同位角相等3,內(nèi)錯(cuò)角相等,兩直線平行,CDG兩直線平行,同位角相等40°;

3∵(abn=(乘方的意義)

=(乘法交換律、乘法結(jié)合律)

=anbn(乘方的意義)

∴(abn=anbn

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為發(fā)展校園足球運(yùn)動(dòng),某縣城區(qū)四校決定聯(lián)合購(gòu)買一批足球運(yùn)動(dòng)裝備,市場(chǎng)調(diào)查發(fā)現(xiàn):甲、乙兩商場(chǎng)以同樣的價(jià)格出售同種品牌的足球隊(duì)服和足球,已知每套隊(duì)服比每個(gè)足球多50元,兩套隊(duì)服與三個(gè)足球的費(fèi)用相等,經(jīng)洽談,甲商場(chǎng)優(yōu)惠方案是:每購(gòu)買十套隊(duì)服,送一個(gè)足球;乙商場(chǎng)優(yōu)惠方案是:若購(gòu)買隊(duì)服超過80套,則購(gòu)買足球打八折.

(1)求每套隊(duì)服和每個(gè)足球的價(jià)格是多少?

(2)若城區(qū)四校聯(lián)合購(gòu)買100套隊(duì)服和a個(gè)足球,請(qǐng)用含a的式子分別表示出到甲商場(chǎng)和乙商場(chǎng)購(gòu)買裝備所花的費(fèi)用;

(3)假如你是本次購(gòu)買任務(wù)的負(fù)責(zé)人,你認(rèn)為到哪家商場(chǎng)購(gòu)買比較合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果∠A和∠B互補(bǔ),且∠A>∠B,給出下列四個(gè)式子:①90°﹣B;②∠A﹣90°;A+∠B)A﹣B)其中表示∠B余角的式子有_____.(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班將舉行“數(shù)學(xué)知識(shí)競(jìng)賽”活動(dòng),班長(zhǎng)安排小明購(gòu)買獎(jiǎng)品,下面兩圖是小明買回獎(jiǎng)品時(shí)與班長(zhǎng)的對(duì)話情境:

請(qǐng)根據(jù)上面的信息,解決問題:

(1)試計(jì)算兩種筆記本各買了多少本?

(2)請(qǐng)你解釋:小明為什么不可能找回68元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】暑假期間,兩名教師計(jì)劃帶領(lǐng)若干名學(xué)生去旅游,他們聯(lián)系了報(bào)價(jià)均為每人500元的兩家旅行社經(jīng)協(xié)商,甲旅行社的優(yōu)惠條件是:兩名教師全額收費(fèi),學(xué)生都按七折收費(fèi);乙旅行社的優(yōu)惠條件是:教師、學(xué)生都按八折收費(fèi)請(qǐng)你幫他們選擇一下,選哪家旅行社比較合算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(3,0)兩點(diǎn),且與y軸交于點(diǎn)C,點(diǎn)D是拋物線的頂點(diǎn),拋物線的對(duì)稱軸DE交x軸于點(diǎn)E,連接BD.

(1)求經(jīng)過A,B,C三點(diǎn)的拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)P是線段BD上一點(diǎn),當(dāng)PE=PC時(shí),求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,過點(diǎn)P作PF⊥x軸于點(diǎn)F,G為拋物線上一動(dòng)點(diǎn),M為x軸上一動(dòng)點(diǎn),N為直線PF上一動(dòng)點(diǎn),當(dāng)以F、M、N、G為頂點(diǎn)的四邊形是正方形時(shí),請(qǐng)求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠A=120°,C=80°.將△BMN沿著MN翻折,得到△FMN.若MFAD,F(xiàn)NDC,則∠F的度數(shù)為(  )

A. 70° B. 80° C. 90° D. 100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)活動(dòng)課上,小聰同學(xué)擺弄著自己剛購(gòu)買的一套三角板,將兩塊直角三角板的直角頂點(diǎn)C疊放在一起,然后轉(zhuǎn)動(dòng)三角板,在轉(zhuǎn)動(dòng)過程中,請(qǐng)解決以下問題:

(1)如圖(1):當(dāng)∠DCE=30°時(shí),∠ACB+∠DCE=   ,若∠DCE為任意銳角時(shí),你還能求出∠ACB∠DCE的數(shù)量關(guān)系嗎?若能,請(qǐng)求出;若不能,請(qǐng)說明理由.

(2)當(dāng)轉(zhuǎn)動(dòng)到圖(2)情況時(shí),∠ACB∠DCE有怎樣的數(shù)量關(guān)系?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有甲、乙兩個(gè)容器,分別裝有進(jìn)水管和出水管,兩容器的進(jìn)、出水速度不變,先打開乙容器的進(jìn)水管,2分鐘時(shí)再打開甲容器的進(jìn)水管,又過2分鐘關(guān)閉甲容器的進(jìn)水管,再過4分鐘同時(shí)打開甲容器的進(jìn)、出水管.直到12分鐘時(shí),同時(shí)關(guān)閉兩容器的進(jìn)、出水管.打開和關(guān)閉水管的時(shí)間忽略不計(jì).容器中的水量y()與乙容器注水時(shí)間x()之間的關(guān)系如圖所示.

(1)求甲容器的進(jìn)、出水速度;

(2)甲容器的進(jìn)、出水管都關(guān)閉后,是否存在兩容器的水量相等?若存在,求出此時(shí)的時(shí)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案