【題目】已知△ABC中,AB=AC.
(1)如圖1,在△ADE中,若AD=AE,且∠DAE=∠BAC,求證:CD=BE;
(2)如圖2,在△ADE中,若∠DAE=∠BAC=60°,且CD垂直平分AE,AD=6,CD=8,求BD的長(zhǎng)
【答案】(1)詳見(jiàn)解析;(2)BD=10.
【解析】
(1)根據(jù)SAS證明△BAE和△CAD全等,再利用全等三角形的性質(zhì)證明即可;
(2)根據(jù)等邊三角形的性質(zhì)和含30°的直角三角形的性質(zhì)解答即可.
解:(1)∵∠DAE=∠BAC,
∴∠BAE=∠CAD,
在△BAE和△CAD中,
,
∴△BAE≌△CAD(SAS),
∴CD=BE;
(2)解:連接BE,如圖2所示:
∵AD=AE,∠DAE=60°,
∴△ADE是等邊三角形,
∵CD垂直平分AE,
∴∠CDA=∠ADE=×60°=30°,
∵△BAE≌△CAD,
∴BE=CD=8,∠BEA=∠CDA=30°,
∴BE⊥DE,
DE=AD=6,
∴BD==10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖,AD、BC相交于點(diǎn)O,OA=OC,∠OBD=∠ODB.求證:AB=CD.
(2)如圖,AB是⊙O的直徑,OA=1,AC是⊙O的弦,過(guò)點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D,若OD=,求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解決問(wèn)題:(假設(shè)行車(chē)過(guò)程沒(méi)有停車(chē)等時(shí),且平均車(chē)速為0.5千米/分鐘)
華夏專(zhuān)車(chē) | 神州專(zhuān)車(chē) | |
里程費(fèi) | 1.8元/千米 | 2元/千米 |
時(shí)長(zhǎng)費(fèi) | 0.3元/分鐘 | 0.6元/分鐘 |
遠(yuǎn)途費(fèi) | 0.8元/千米產(chǎn)(超過(guò)7千米部分) | 無(wú) |
起步價(jià) | 無(wú) | 10元 |
華夏專(zhuān)車(chē):車(chē)費(fèi)由里程費(fèi)、時(shí)長(zhǎng)費(fèi)、遠(yuǎn)途費(fèi)三部分構(gòu)成,其中里程費(fèi)按行車(chē)的實(shí)際里程計(jì)算;時(shí)長(zhǎng)費(fèi)按行車(chē)的實(shí)際時(shí)間計(jì)算;遠(yuǎn)途費(fèi)的收取方式為:行車(chē)?yán)锍?/span>7千米以?xún)?nèi)(含7千米)不收遠(yuǎn)途費(fèi),超過(guò)7千米的,超出的部分按每千米加收0.8元. 神州專(zhuān)車(chē):車(chē)費(fèi)由里程費(fèi)、時(shí)長(zhǎng)費(fèi)、起步價(jià)三部分構(gòu)成,其中里程費(fèi)按行車(chē)的實(shí)際里程計(jì)算;時(shí)長(zhǎng)費(fèi)按行車(chē)的實(shí)際時(shí)間計(jì)算;起步價(jià)與行車(chē)距離無(wú)關(guān). |
(1)小明在該地區(qū)出差,乘車(chē)距離為10千米,如果小明使用華夏專(zhuān)車(chē),需要支付的打車(chē)費(fèi)用為 元;
(2)小強(qiáng)在該地區(qū)從甲地乘坐神州專(zhuān)車(chē)到乙地,一共花費(fèi)42元,求甲乙兩地距離是多少千米?
(3)神州專(zhuān)車(chē)為了和華夏專(zhuān)車(chē)競(jìng)爭(zhēng)客戶(hù),分別推出了優(yōu)惠方式,華夏專(zhuān)車(chē)對(duì)于乘車(chē)路程在7千米以上(含7千米)的客戶(hù)每次收費(fèi)立減9元;神州打車(chē)車(chē)費(fèi)5折優(yōu)惠.對(duì)采用哪一種打車(chē)方式更合算提出你的建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等腰RtABC與等腰RtCDE,∠ACB=∠DCE=90°.把RtABC繞點(diǎn)C旋轉(zhuǎn).
(1)如圖1,當(dāng)點(diǎn)A旋轉(zhuǎn)到ED的延長(zhǎng)線時(shí),若,BE=5,求CD的長(zhǎng);
(2)當(dāng)RtABC旋轉(zhuǎn)到如圖2所示的位置時(shí),過(guò)點(diǎn)C作BD的垂線交BD于點(diǎn)F,交AE于點(diǎn)G,求證:BD=2CG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)驗(yàn)室里,水平圓桌面上有甲乙丙三個(gè)圓柱形容器(容器足夠高),底面半徑之比為1:2:1,用兩根相同的管子在容器的5cm高度處連接(即管子底端離容器底5cm),現(xiàn)三個(gè)容器中,只有甲中有水,水位高1cm,如圖所示.若每分鐘同時(shí)向乙和丙注入相同量的水,開(kāi)始注水1分鐘,乙的水位高度為cm,則開(kāi)始注入________分鐘的水量后,甲與乙的水位高度之差是cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,E是AB的中點(diǎn),FE⊥AB,AF=2AE,F(xiàn)C交BD于O,則∠DOC的度數(shù)為________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平整的地面上,由若干個(gè)完全相同的棱長(zhǎng)為10 cm的小正方體堆成一個(gè)幾何體,如圖①所示.
(1)請(qǐng)你在方格紙中分別畫(huà)出這個(gè)幾何體的主視圖和左視圖;
(2)若現(xiàn)在手頭還有一些相同的小正方體,如果保持這個(gè)幾何體的主視圖和俯視圖不變,
Ⅰ.在圖①所示幾何體上最多可以添加 個(gè)小正方體;
Ⅱ.在圖①所示幾何體上最多可以拿走 個(gè)小正方體;
Ⅲ.在題Ⅱ的情況下,把這個(gè)幾何體放置在墻角,使得幾何體的左面和后面靠墻,其俯視圖如圖②所示,若給該幾何體露在外面的面噴上紅漆,則需要噴漆的面積最少是多少平方厘米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為4的等邊三角形ABC中,E是對(duì)稱(chēng)軸AD上的一個(gè)動(dòng)點(diǎn),連接EC,將線段EC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得到FC,連接DF,則在點(diǎn)E運(yùn)動(dòng)過(guò)程中,DF的最小值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直角三角板和直角三角板,,,.
(1)如圖1,將頂點(diǎn)和頂點(diǎn)重合,保持三角板不動(dòng),將三角板繞點(diǎn)旋轉(zhuǎn),當(dāng)平分時(shí),求的度數(shù);
(2)在(1)的條件下,繼續(xù)旋轉(zhuǎn)三角板,猜想與有怎樣的數(shù)量關(guān)系?并利用圖2所給的情形說(shuō)明理由;
(3)如圖3,將頂點(diǎn)和頂點(diǎn)重合,保持三角板不動(dòng),將三角板繞點(diǎn)旋轉(zhuǎn).當(dāng)落在內(nèi)部時(shí),直接寫(xiě)出與之間的數(shù)量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com