【題目】如圖,ABDE,求證:∠DBCDB180°.

證明:過點CCFAB.

ABCF(已知),

∴∠B________(____________________)

ABDECFAB(已知),

CFDE(__________________________________)

∴∠2________180°(________________________)

∵∠2BCD________(已知)

∴∠DBCDB180°(等量代換)

【答案】見解析

【解析】試題分析:根據(jù)平行線的性質(zhì)得出∠B=∠1,∠2+∠D=180°,代入求出即可.

試題解析:證明:過點CCF∥AB,

∵AB∥CF(已知),

∴∠B=∠1(兩直線平行,內(nèi)錯角相等),

∵AB∥DE,CF∥AB(已知),

∴CF∥DE (平行于同一條直線的兩條直線平行),

∴∠2+∠D=180° (兩直線平行,同旁內(nèi)角互補),

∵∠2=∠BCD-∠1(已知)

∴∠D+∠BCD-∠B=180° (等量代換),

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從3,0,-1,-2,-3這五個數(shù)中,隨機抽取一個數(shù),作為函數(shù)y=(5-m2)x和關(guān)于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函數(shù)的圖象經(jīng)過第一、三象限,且方程有實數(shù)根的概率為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=10cm,AD=8cm,點P從點A出發(fā)沿AB以2cm/s的速度向點終點B運動,同時點Q從點B出發(fā)沿BC以1cm/s的速度向點終點C運動,它們到達終點后停止運動.

(1)幾秒后,點P、D的距離是點PQ的距離的2倍;

(2)幾秒后,△DPQ的面積是24cm2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2015桂林)全民閱讀深入人心,好讀書,讀好書,讓人終身受益.為滿足同學(xué)們的讀書需求,學(xué)校圖書館準備到新華書店采購文學(xué)名著和動漫書兩類圖書.經(jīng)了解,20本文學(xué)名著和40本動漫書共需1520元,20本文學(xué)名著比20本動漫書多440元(注:所采購的文學(xué)名著價格都一樣,所采購的動漫書價格都一樣).

1)求每本文學(xué)名著和動漫書各多少元?

2)若學(xué)校要求購買動漫書比文學(xué)名著多20本,動漫書和文學(xué)名著總數(shù)不低于72本,總費用不超過2000元,請求出所有符合條件的購書方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CN是等邊的外角內(nèi)部的一條射線,點A關(guān)于CN的對稱點為D,連接AD,BD,CD,其中ADBD分別交射線CN于點E,P

(1)依題意補全圖形;

2)若,求的大。ㄓ煤的式子表示);

3)用等式表示線段, 之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在平面直角坐標系中,A(a,0),C(b2),且滿足(a2)20,過CCBx軸于B.

(1)求三角形ABC的面積;

(2)如圖②,若過BBDACy軸于D,且AE,DE分別平分∠CABODB,求∠AED的度數(shù);

(3)y軸上是否存在點P,使得三角形ACP和三角形ABC的面積相等?若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知DEBC,BE平分∠ABC,∠C=65°,∠ABC=50°.

(1)求∠BED的度數(shù);

(2)判斷BEAC的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀第(1)題的解答過程,然后再解第(2)題

1)已知多項式2x3x2+m有一個因式是2x+1m的值

解法一設(shè)2x3x2+m=2x+1)(x2+ax+b),2x3x2+m=2x3+2a+1x2+a+2bx+b

比較系數(shù)得 解得 ,.

解法二設(shè)2x3x2+m=A2x+1)(A為整式)

由于上式為恒等式為方便計算了取, ,

2)已知x4+mx3+nx﹣16有因式(x﹣1)和(x﹣2),m、n的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,O為坐標原點,四邊形OABC為矩形,A(10,0),C(0,4),點D是OA的中點,點P在BC上以每秒1個單位的速度由C向B運動。

(1) 求梯形ODPC的面積S與時間t的函數(shù)關(guān)系式。

(2) t為何值時,四邊形PODB是平行四邊形?

(3) 在線段PB上是否存在一點Q,使得ODQP為菱形。若存在求t值,若不存在,說明理由。

(4) 當OPD為等腰三角形時,求點P的坐標。

查看答案和解析>>

同步練習(xí)冊答案