【題目】下列兩個(gè)三角形中,一定全等的是( )
A.兩個(gè)等腰三角形
B.兩個(gè)等腰直角三角形
C.兩個(gè)等邊三角形
D.兩個(gè)周長(zhǎng)相等的等邊三角形

【答案】D
【解析】∵兩個(gè)等腰三角形不一定全等,

∴選項(xiàng)A不正確;

∵兩個(gè)等腰直角三角形一定相似,不一定全等,

∴選項(xiàng)B不正確;

∵兩個(gè)等邊三角形一定相似,不一定全等,

∴選項(xiàng)C不正確;

∵兩個(gè)周長(zhǎng)相等的等邊三角形的邊長(zhǎng)相等,

∴兩個(gè)周長(zhǎng)相等的等邊三角形一定全等,

∴選項(xiàng)D正確;

所以答案是:D.


【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等邊三角形的性質(zhì)的相關(guān)知識(shí),掌握等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E、F分別是□ABCD的邊BC、AD上的點(diǎn),且BEDF

(1)求證:四邊形AECF是平行四邊形;

(2)若BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高科技創(chuàng)新意識(shí),我市某中學(xué)在“2016年科技節(jié)”活動(dòng)中舉行科技比賽,包括“航!薄ⅰ皺C(jī)器人”、“環(huán)!、“建!彼膫(gè)類別(每個(gè)學(xué)生只能參加一個(gè)類別的比賽),各類別參賽人數(shù)統(tǒng)計(jì)如圖:

請(qǐng)根據(jù)以上信息,解答下列問題:

(1)全體參賽的學(xué)生共有 人,“建!痹谏刃谓y(tǒng)計(jì)圖中的圓心角是 °;

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)在比賽結(jié)果中,獲得“環(huán)保”類一等獎(jiǎng)的學(xué)生為1名男生和2名女生,獲得“建!鳖愐坏泉(jiǎng)的學(xué)生為1名男生和1名女生,現(xiàn)從這兩類獲得一等獎(jiǎng)的學(xué)生中各隨機(jī)選取1名學(xué)生參加市級(jí)“環(huán)保建!笨疾旎顒(dòng),問選取的兩人中恰為1男生1女生的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上的點(diǎn)A、B、C、D分別表示數(shù)a、b、c、d,已知點(diǎn)A在點(diǎn)B的左側(cè),點(diǎn)C在點(diǎn)B的左側(cè),點(diǎn)D在點(diǎn)B、C之間,則下列式子中,可能成立的是(
A.a<b<c<d
B.b<c<d<a
C.c<d<a<b
D.c<d<b<a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠共有50名員工,他們的月工資方差s2=20,現(xiàn)在給每個(gè)員工的月工資增加300元,那么他們新工資的方差是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方程x23x+20的解是(  )

A. x11,x22B. x1=﹣1,x2=﹣2

C. x11x2=﹣2D. x1=﹣1,x22

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠今年一月份新產(chǎn)品的研發(fā)資金為1000元,以后每月新產(chǎn)品的研發(fā)資金與上月相比增長(zhǎng)率都是x,則該廠今年三月份新產(chǎn)品的研發(fā)資金y(元)關(guān)于x的函數(shù)關(guān)系式為y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】達(dá)州市圖書館今年4月23日開放以來,受到市民的廣泛關(guān)注.5月底,八年級(jí)(1)班學(xué)生小穎對(duì)全班同學(xué)這一個(gè)多月來去新圖書館的次數(shù)做了調(diào)查統(tǒng)計(jì),并制成了如圖不完整的統(tǒng)計(jì)圖表.

八年級(jí)(1)班學(xué)生去新圖書館的次數(shù)統(tǒng)計(jì)表

去圖書館的次數(shù)

0次

1次

2次

3次

4次及以上

人數(shù)

8

12

a

10

4

請(qǐng)你根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問題:

(1)填空:a= ,b= ;

(2)求扇形統(tǒng)計(jì)圖中“0次”的扇形所占圓心角的度數(shù);

(3)從全班去過該圖書館的同學(xué)中隨機(jī)抽取1人,談?wù)剬?duì)新圖書館的印象和感受.求恰好抽中去過“4次及以上”的同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,直線y=x+4交于x軸于點(diǎn)A,交y軸于點(diǎn)C,過A、C兩點(diǎn)的拋物線F1交x軸于另一點(diǎn)B(1,0).

(1)求拋物線F1所表示的二次函數(shù)的表達(dá)式;

(2)若點(diǎn)M是拋物線F1位于第二象限圖象上的一點(diǎn),設(shè)四邊形MAOC和△BOC的面積分別為S四邊形MAOC和S△BOC,記S=S四邊形MAOC﹣S△BOC,求S最大時(shí)點(diǎn)M的坐標(biāo)及S的最大值;

(3)如圖②,將拋物線F1沿y軸翻折并“復(fù)制”得到拋物線F2,點(diǎn)A、B與(2)中所求的點(diǎn)M的對(duì)應(yīng)點(diǎn)分別為A′、B′、M′,過點(diǎn)M′作M′E⊥x軸于點(diǎn)E,交直線A′C于點(diǎn)D,在x軸上是否存在點(diǎn)P,使得以A′、D、P為頂點(diǎn)的三角形與△AB′C相似?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案