如圖,二次函數(shù)的圖象經(jīng)過點D,與x軸交于A、B兩點.

(1)求c的值;
(2)如圖①,設(shè)點C為該二次函數(shù)的圖象在x軸上方的一點,直線AC將四邊形ABCD的面積二等分,試證明線段BD被直線AC平分,并求此時直線AC的函數(shù)解析式;
(3)設(shè)點P、Q為該二次函數(shù)的圖象在x軸上方的兩個動點,試猜想:是否存在這樣的點P、Q,使△AQP≌△ABP?如果存在,請舉例驗證你的猜想;如果不存在,請說明理由.(圖②供選用)
【答案】分析:(1)將D點坐標(biāo)代入拋物線的解析式中,即可求出待定系數(shù)c的值;
(2)若△ACD與△ABC的面積相等,則兩個三角形中,AC邊上的高相等,設(shè)AC、BD的交點為E,若以CE為底,AC邊上的高為高,可證得△CED和△CEB的面積相等;這兩個三角形中,若以DE、BE為底,則兩個三角形同高,那么DE=BE,由此可證得AC平分BD;
由于E是BD的中點,根據(jù)B、D的坐標(biāo),即可求出E點的坐標(biāo),根據(jù)A、E的坐標(biāo)即可用待定系數(shù)法求出直線AC的解析式;
(3)設(shè)拋物線頂點為N(0,6),在Rt△AON中,易得AN=4,于是以A點為圓心,AB=4為半徑作圓與拋物線在x軸上方一定有交點Q,連接AQ,再作∠QAB平分線AP交拋物線于P,連接BP,PQ,此時由“邊角邊”易得△AQP≌△ABP.
解答:解:(1)∵拋物線經(jīng)過D(-),則有
-×3+c=,
解得c=6;

(2)設(shè)AC與BD的交點為E,過D作DM⊥AC于M,過B作BN⊥AC于N
∵S△ADC=S△ACB,
AC•DM=AC•BN,即DM=BN;
CE•DM=CE•BN,
即S△CED=S△BEC(*);
設(shè)△BCD中,BD邊上的高為h,由(*)得:
 DE•h=BE•h,即BE=DE,故AC平分BD;
易知:A(-2,0),B(2,0),D(-,),
由于E是BD的中點,則E(,);
設(shè)直線AC的解析式為y=kx+b,則有:
 ,
解得
∴直線AC的解析式為y=x+

(3)存在.
設(shè)拋物線頂點為N(0,6),在Rt△AON中,易得AN=4
于是以A點為圓心,AB=4為半徑作圓與拋物線在x軸上方一定有交點Q,連接AQ,
再作∠QAB平分線AP交拋物線于P,連接BP,PQ,
此時由“邊角邊”易得△AQP≌△ABP.
點評:此題主要考查了一次函數(shù)與二次函數(shù)解析式的確定、三角形面積的求法、以及全等三角形和直角三角形的判定和性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在直角坐標(biāo)平面內(nèi),點A的坐標(biāo)為(3,0),第一象限內(nèi)的點P在直線y=2x上,∠PAO=45度.精英家教網(wǎng)
(1)求點P的坐標(biāo);
(2)如果二次函數(shù)的圖象經(jīng)過P、O、A三點,求這個二次函數(shù)的解析式,并寫出它的圖象的頂點坐標(biāo)M;
(3)如果將第(2)小題中的二次函數(shù)的圖象向上或向下平移,使它的頂點落在直線y=2x上的點Q處,求△APM與△APQ的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知在直角坐標(biāo)平面內(nèi),點A的坐標(biāo)為(3,0),第一象限內(nèi)的點P在直線y=2x上,∠PAO=45度.
(1)求點P的坐標(biāo);
(2)如果二次函數(shù)的圖象經(jīng)過P、O、A三點,求這個二次函數(shù)的解析式,并寫出它的圖象的頂點坐標(biāo)M;
(3)如果將第(2)小題中的二次函數(shù)的圖象向上或向下平移,使它的頂點落在直線y=2x上的點Q處,求△APM與△APQ的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年北京市華夏女子中學(xué)九年級第一學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

如圖是二次函數(shù)的圖象,其頂點坐標(biāo)為M(1,-4).

【小題1】(1)求出圖象與軸的交點A,B的坐標(biāo);
【小題2】(2)在二次函數(shù)的圖象上是否存在點P,使,若存在,求出P點的坐標(biāo);若不存在,請說明理由;
【小題3】(3)將二次函數(shù)的圖象在軸下方的部分沿軸翻折,圖象的其余部分保持不變,得到一個新的圖象,請你結(jié)合這個新的圖象回答:當(dāng)直線與此圖象有兩個公共點時,的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年上海市中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

如圖,已知在直角坐標(biāo)平面內(nèi),點A的坐標(biāo)為(3,0),第一象限內(nèi)的點P在直線y=2x上,∠PAO=45度.
(1)求點P的坐標(biāo);
(2)如果二次函數(shù)的圖象經(jīng)過P、O、A三點,求這個二次函數(shù)的解析式,并寫出它的圖象的頂點坐標(biāo)M;
(3)如果將第(2)小題中的二次函數(shù)的圖象向上或向下平移,使它的頂點落在直線y=2x上的點Q處,求△APM與△APQ的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年上海市浦東新區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

如圖,已知在直角坐標(biāo)平面內(nèi),點A的坐標(biāo)為(3,0),第一象限內(nèi)的點P在直線y=2x上,∠PAO=45度.
(1)求點P的坐標(biāo);
(2)如果二次函數(shù)的圖象經(jīng)過P、O、A三點,求這個二次函數(shù)的解析式,并寫出它的圖象的頂點坐標(biāo)M;
(3)如果將第(2)小題中的二次函數(shù)的圖象向上或向下平移,使它的頂點落在直線y=2x上的點Q處,求△APM與△APQ的面積之比.

查看答案和解析>>

同步練習(xí)冊答案