精英家教網(wǎng)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:
①a,b同號;②當x=1和x=3時,函數(shù)值相等;③4a+b=0;④當y=-2時,x的值只能取2;
⑤當-1<x<5時,y<0.其中正確的有( 。
A、2個B、3個C、4個D、5個
分析:由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.
解答:解:①∵拋物線的開口方向向上,
∴a>0,
∵對稱軸為x=-
b
2a
=2>0,
又∵a>0,
∴b<0,
即a,b異號,錯誤;
②∵x=1和x=3關(guān)于x=2對稱,
∴當x=1和x=3時,函數(shù)值相等,正確;
③∵x=-
b
2a
=2,
∴b=-4a,
即4a+b=0,正確;
④∵y=-2正好為拋物線頂點坐標的縱坐標,
∴當y=-2時,x的值只能取2,正確;
⑤∵對稱軸為x=2,
∴x=-1和x=5關(guān)于x=2對稱,
故當-1<x<5時,y<0.
∴②、③、④、⑤正確.
故選C.
點評:考查二次函數(shù)y=ax2+bx+c系數(shù)符號的確定.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

21、已知二次函數(shù)y=a(x+1)2+c的圖象如圖所示,則函數(shù)y=ax+c的圖象只可能是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知二次函數(shù)y=ax+bx+c的圖象與x軸交于點A.B,與y軸交于點 C.

(1)寫出A. B.C三點的坐標;(2)求出二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年廣東省廣州市海珠區(qū)九年級上學期期末數(shù)學試卷(解析版) 題型:選擇題

已知二次函數(shù)y=ax²+bx+c(a≠0)的圖像如圖所示,則下列結(jié)論中正確的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一個根

C.a+b+c=0          D.當x<1時,y隨x的增大而減小

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

已知二次函數(shù)y=ax+bx+c(a≠0,a,b,c為常數(shù)),對稱軸為直線x=1,它的部分自變量與函數(shù)值y的對應值如下表,寫出方程ax2+bx+c=0的一個正數(shù)解的近似值________(精確到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=ax²+bx+c(c≠0)的圖像如圖4所示,下列說法錯誤的是:

(A)圖像關(guān)于直線x=1對稱

(B)函數(shù)y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的兩個根

(D)當x<1時,y隨x的增大而增大

查看答案和解析>>

同步練習冊答案