【題目】“五一”期間,甲、乙兩家商店以同樣價(jià)格銷(xiāo)售相同的商品,兩家優(yōu)惠方案分別為:甲店一次性購(gòu)物中超過(guò)200元后的價(jià)格部分打七折;乙店一次性購(gòu)物中超過(guò)500元后的價(jià)格部分打五折,設(shè)商品原價(jià)為x元(x≥0),購(gòu)物應(yīng)付金額為y元.
(1)求在甲商店購(gòu)物時(shí)y與x之間的函數(shù)關(guān)系;
(2)兩種購(gòu)物方式對(duì)應(yīng)的函數(shù)圖象如圖所示,求交點(diǎn)C的坐標(biāo);
(3)根據(jù)圖象,請(qǐng)直接寫(xiě)出“五一”期間選擇哪家商店購(gòu)物更優(yōu)惠.
【答案】(1)當(dāng)0≤x≤200時(shí),y1=x,當(dāng)x>200時(shí),y1=0.7x+60;(2)點(diǎn)C坐標(biāo)(950,725);(3)見(jiàn)解析.
【解析】
(1)根據(jù)題意分當(dāng)0≤x≤200時(shí),當(dāng)x>200時(shí)兩種情況分別求出y1即可.
(2)求出直線BC,列方程組即可解決問(wèn)題.
(3)利用圖象即可解決問(wèn)題.
解:(1)根據(jù)題意,得
當(dāng)0 ≤ x ≤ 200時(shí),y1=x;
當(dāng)x > 200時(shí),y1=200+0.7(x- 200)
=0.7 x+60.
綜上所知,甲商店購(gòu)物時(shí)y1與x之間的函數(shù)關(guān)系式為
y1=﹛x(0 ≤ x ≤ 200);0.7 x+60(x > 200).
(2)由圖象可知,交點(diǎn)C的橫坐標(biāo)大于500,
當(dāng)x﹥500時(shí),設(shè)乙商店購(gòu)物時(shí)應(yīng)付金額為y2元,
則y2=500+0.5(x- 500)=0.5 x+250.
由(1)知,當(dāng)x﹥500時(shí),y1=0.7 x+60.
由于點(diǎn)C是y1與y2的交點(diǎn),
∴令0.7 x+60=0.5 x+250.
解得x=950,此時(shí)y1=y2=725.
即交點(diǎn)C的坐標(biāo)為(950,725).
(3)結(jié)合圖像和(2)可知:
當(dāng)0 ≤ x ≤ 200或x=950時(shí),
選擇甲、乙兩家商店購(gòu)物費(fèi)用相同;
當(dāng)200<x<950時(shí),選擇甲商店購(gòu)物更優(yōu)惠;
當(dāng)x﹥950時(shí),選擇乙商店購(gòu)物更優(yōu)惠.
“點(diǎn)睛”本題考查一次函數(shù)的應(yīng)用,方程組等知識(shí),解題是關(guān)鍵是學(xué)會(huì)構(gòu)建一次函數(shù),知道利用方程組求兩個(gè)和尚圖象交點(diǎn)坐標(biāo),學(xué)會(huì)利用圖象比較函數(shù)值大小,屬于中考?碱}型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊△ABC中,AB=3,點(diǎn)O在AB的延長(zhǎng)線上,OA=6,且∠AOE=30°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒個(gè)單位的速度沿射線OE方向運(yùn)動(dòng),以P為圓心,OP為半徑作⊙P,同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位的速度沿折線B…C…A向點(diǎn)A運(yùn)動(dòng),Q與A重合時(shí),P、Q同時(shí)停止運(yùn)動(dòng),設(shè)P的運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)△POB是直角三角形時(shí),求t的值;
(2)當(dāng)⊙P過(guò)點(diǎn)C時(shí),求⊙P與線段OA圍成的封閉圖形的面積;
(3)當(dāng)⊙P與△ABC的邊所在直線相切時(shí),求t的值;
(4)當(dāng)線段OQ與⊙P只有一個(gè)公共點(diǎn)時(shí),直接寫(xiě)出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖△ABC中,∠ACB=90°,AC=8,BC=6,點(diǎn)E是AB中點(diǎn),將△CAE沿著直線CE翻折,得到△CDE,連接AD,則點(diǎn)E到線段AD的距離等于( )
A.2B.1.8C.1.5D.1.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在ABCD中,AE⊥BC于點(diǎn)E,以點(diǎn)B為中心,取旋轉(zhuǎn)角等于∠ABC,把△BAE順時(shí)針旋轉(zhuǎn)得到△BA′E′,連接DA′,若∠ADC=60°,AD=5,DC=4,則DA′的大小為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分線,DE⊥AB于E點(diǎn).
(1)求∠EDA的度數(shù);
(2)AB=10,AC=8,DE=3,求S△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等邊三角形ABC的邊長(zhǎng)為4 cm,點(diǎn)D從點(diǎn)C出發(fā)沿CA向點(diǎn)A運(yùn)動(dòng),點(diǎn)E從點(diǎn)B出發(fā)沿AB的延長(zhǎng)線BF向右運(yùn)動(dòng),已知點(diǎn)D,E都以每秒 cm的速度同時(shí)開(kāi)始運(yùn)動(dòng),運(yùn)動(dòng)過(guò)程中DE與BC相交于點(diǎn)P.
(1).當(dāng)點(diǎn)D,E運(yùn)動(dòng)多少秒后,△ADE為直角三角形?
(2)在點(diǎn)D,E運(yùn)動(dòng)時(shí),線段PD與線段PE相等嗎?如果相等,予以證明;如不相等,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,對(duì)稱軸為直線,則下列結(jié)論正確的是( )
A. B. 方程的兩個(gè)根是,
C. D. 當(dāng)時(shí),隨的增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,線段AB和射線BM交于點(diǎn)B.
(1)利用尺規(guī)完成以下作圖,并保留作圖痕跡(不寫(xiě)做法)
①在射線BM上作一點(diǎn)C,使AC=AB,連接AC
②作∠ABM的角平分線交AC于點(diǎn)D
③在射線CM上作一點(diǎn)E,使CE=CD,連接DE
(2)在(1)中所作的圖形中,通過(guò)觀察和測(cè)量可以發(fā)現(xiàn)BD=DE,請(qǐng)將下面的證明過(guò)程補(bǔ)充完整證明:∵AC=AB,
∴∠ =∠
∵BD平分∠ABM,
∴∠DBE=﹣∠
∵CE=CD
∴∠CDE=∠CED
∴∠ACB=∠CDE+∠CED,
∴∠CED=∠ACB
∴∠DBE=∠CED,
∴BD=DE,( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直角三角形斜邊上的中線把直角三角形分成的兩個(gè)三角形的關(guān)系是( 。
A. 形狀相同 B. 周長(zhǎng)相等 C. 面積相等 D. 全等
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com