【題目】如圖,雙曲線(x>0)上有一點(diǎn)A(1,5),過(guò)點(diǎn)A的直線y=mx+nx軸交于點(diǎn)C(6,0).

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)連接OA、OB,求AOB的面積;

(3)根據(jù)圖象直接寫出在第一象限內(nèi)反比例函數(shù)值大于一次函數(shù)值時(shí)x的取值范圍.

【答案】1y=﹣x+6 212 30x1x6

【解析】

試題(1)把A的代入反比例函數(shù)的解析式即可求出反比例函數(shù)的解析式,把A、C的坐標(biāo)代入y=mx+n即可求出一次函數(shù)的解析式;

2)求出B的坐標(biāo),根據(jù)三角形的面積公式求出即可;

3)根據(jù)A、B的坐標(biāo)結(jié)合圖象即可得出答案.

解:(1)把A15)代入y=得:=5,

反比例函數(shù)的解析式是y=

A、C的坐標(biāo)代入y=mx+n得:

解得:m=﹣1,n=6,

一次函數(shù)的解析式是y=﹣x+6;

2)解方程組得:

∵A1,5),

∴B5,1),

∵C6,0),

∴OC=6,

∴SAOB=SAOC﹣SBCO=×6×5﹣×6×1=12;

3)在第一象限內(nèi)反比例函數(shù)值大于一次函數(shù)值時(shí)x的取值范圍是0x1x6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:求解一元一次方程,需要根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為xa的形式;求解二元一次方程組,需要通過(guò)消元把它轉(zhuǎn)化為一元一次方程來(lái)解;求解三元一次方程組,需要把它轉(zhuǎn)化為二元一次方程組來(lái)解;求解一元二次方程,需要把它轉(zhuǎn)化為兩個(gè)一元一次方程來(lái)解;求解分式方程,需要通過(guò)去分母把它轉(zhuǎn)化為整式方程來(lái)解,各類方程的解法不盡相同,但是它們都用到一種共同的基本數(shù)學(xué)思想﹣轉(zhuǎn)化,即把未知轉(zhuǎn)化為已知來(lái)求解.

用“轉(zhuǎn)化“的數(shù)學(xué)思想,我們還可以解一些新的方程.

例如,解一元三次方程x3+x22x0,通過(guò)因式分解把它轉(zhuǎn)化為xx2+x2)=0,通過(guò)解方程x0x2+x20,可得原方程x3+x22x0的解.

再例如,解根號(hào)下含有來(lái)知數(shù)的方程:x,通過(guò)兩邊同時(shí)平方把它轉(zhuǎn)化為2x+3x2,解得:x13,x2=﹣1.因?yàn)?/span>2x+30,且x0,所以x=﹣1不是原方程的根,x3是原方程的解.

1)問(wèn)題:方程x3+x22x0的解是x10,x2   ,x3   

2)拓展:求方程x1的解;

3)應(yīng)用:在一個(gè)邊長(zhǎng)為1的正方形中構(gòu)造一個(gè)如圖所示的正方形;在正方形ABCD邊上依次截取AEBFCGDH,連接AG,BHCE,DF,得到正方形MNPQ,若小正方形MNPQ(圖中陰影部分)的邊長(zhǎng)為,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題探究:小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象與性質(zhì)進(jìn)行了探究.

下面是小明的探究過(guò)程,請(qǐng)你解決相關(guān)問(wèn)題:

在函數(shù)中,自變量x可以是任意實(shí)數(shù);

如表yx的幾組對(duì)應(yīng)值:

X

0

1

2

3

4

Y

0

1

2

3

2

1

a

______;

為該函數(shù)圖象上不同的兩點(diǎn),則______;

如圖,在平面直角坐標(biāo)系中,描出以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),并根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象:

該函數(shù)有______最大值最小值;并寫出這個(gè)值為______;

求出函數(shù)圖象與坐標(biāo)軸在第二象限內(nèi)所圍成的圖形的面積;

觀察函數(shù)的圖象,寫出該圖象的兩條性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,點(diǎn)E、F分別在邊BC、CD上,且∠EAF=CFF=45°

(1) ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90 °,得到ABG(如圖1),求證:BE+DF=EF;

(2) 若直線EFAB、AD的延長(zhǎng)線分別交于點(diǎn)M、N(如圖2),求證:

(3) 將正方形改為長(zhǎng)與寬不相等的矩形,其余條件不變(如圖3),直接寫出線段EF、BE、DF之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題情境:將一副直角三角板(Rt△ABCRt△DEF)按圖1所示的方式擺放,其中∠ACB=90°CA=CB,∠FDE=90°OAB的中點(diǎn),點(diǎn)D與點(diǎn)O重合,DF⊥AC于點(diǎn)MDE⊥BC于點(diǎn)N,試判斷線段OMON的數(shù)量關(guān)系,并說(shuō)明理由.

探究展示:小宇同學(xué)展示出如下正確的解法:

解:OM=ON,證明如下:

連接CO,則COAB邊上中線,

∵CA=CB,∴CO∠ACB的角平分線.(依據(jù)1

∵OM⊥AC,ON⊥BC,∴OM=ON.(依據(jù)2

反思交流:

1)上述證明過(guò)程中的依據(jù)1”依據(jù)2”分別是指:

依據(jù)1

依據(jù)2

2)你有與小宇不同的思考方法嗎?請(qǐng)寫出你的證明過(guò)程.

拓展延伸:

3)將圖1中的Rt△DEF沿著射線BA的方向平移至如圖2所示的位置,使點(diǎn)D落在BA的延長(zhǎng)線上,FD的延長(zhǎng)線與CA的延長(zhǎng)線垂直相交于點(diǎn)M,BC的延長(zhǎng)線與DE垂直相交于點(diǎn)N,連接OM、ON,試判斷線段OM、ON的數(shù)量關(guān)系與位置關(guān)系,并寫出證明過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形ABCD平分BC平分ADF

(1)說(shuō)明四邊形AECF為平行四邊形;

(2)求四邊形AECF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形ABCD中,AB//CD,∠B=∠D.

(1)求證:四邊形ABCD為平行四邊形;

(2)若點(diǎn)P為對(duì)角線AC上的一點(diǎn),PE⊥AB于E,PF⊥AD于F,且PE=PF,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是平行四邊形ABCD對(duì)角線BD上的動(dòng)點(diǎn),點(diǎn)MAD的中點(diǎn),已知AD=8,AB=10,ABD=45°,把平行四邊形ABCD繞著點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn),點(diǎn)P的對(duì)應(yīng)點(diǎn)是點(diǎn)Q,則線段MQ的長(zhǎng)度的最大值與最小值的差為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),在初中數(shù)學(xué)教學(xué)候總使用計(jì)算器是否直接影響學(xué)生計(jì)算能力的發(fā)展這一問(wèn)題受到了廣泛關(guān)注,為此,某校隨機(jī)調(diào)查了n名學(xué)生對(duì)此問(wèn)題的看法(看法分為三種:沒(méi)有影響,影響不大,影響很大),并將調(diào)查結(jié)果 繪制成如下不完整的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖表提供的信息,解答下列問(wèn)題:

n名學(xué)生對(duì)使用計(jì)算器影響計(jì)算能力的發(fā)展看法人數(shù)統(tǒng)計(jì)表

看法

沒(méi)有影響

影響不大

影響很大

學(xué)生人數(shù)(人)

40

60

m

1)求n的值;

2)統(tǒng)計(jì)表中的m= ;

3)估計(jì)該校1800名學(xué)生中認(rèn)為影響很大的學(xué)生人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案