【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標(biāo)系,一條圓弧經(jīng)過網(wǎng)格點(diǎn)A、BC,請(qǐng)?jiān)诰W(wǎng)格中進(jìn)行下列操作:

(1)請(qǐng)?jiān)趫D中確定該圓弧所在圓心D點(diǎn)的位置,D點(diǎn)坐標(biāo)為   ;

(2)連接AD、CD,求⊙D的半徑及扇形DAC的圓心角度數(shù);

(3)若扇形DAC是某一個(gè)圓錐的側(cè)面展開圖,求該圓錐的底面半徑.

【答案】D(2,0)

【解析】(1)找到AB,BC的垂直平分線的交點(diǎn)即為圓心坐標(biāo);
(2)利用勾股定理可求得圓的半徑;易得△AOD≌△DEC,那么∠OAD=∠CDE,即可得到圓心角的度數(shù)為90°;
(3)求得弧長,除以2π即為圓錐的底面半徑.

解:(1)如圖;D(2,0)

(2)如圖;AD===2;

作CE⊥x軸,垂足為E.

∵△AOD≌△DEC,

∴∠OAD=∠CDE,

又∵∠OAD+∠ADO=90°,

∴∠CDE+∠ADO=90°,

∴扇形DAC的圓心角為90度;

(3)∵弧AC的長度即為圓錐底面圓的周長.l===π,

設(shè)圓錐底面圓半徑為r,則2πr=π,

∴r=

“點(diǎn)睛”本題用到的知識(shí)點(diǎn)為:非直徑的弦的垂直平分線經(jīng)過圓心;圓錐的弧長等于底面周長.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列兩個(gè)多項(xiàng)式相乘,不能運(yùn)用平方差公式計(jì)算的是(

A.(m+n)(mn)B.(m+n)(m+n)

C.(mn)(m+n)D.(mn)(n+m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=3x+1的圖象經(jīng)過點(diǎn)(1,a),則a=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點(diǎn)D,過點(diǎn)D的切線交BC于點(diǎn)E。

(1)求證:EB=EC

(2)若以點(diǎn)O、D、E、C為頂點(diǎn)的四邊形是正方形,試判斷△ABC的形狀,并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡(jiǎn)并求值:已知a+b=12,ab=﹣6,求代數(shù)式(4a﹣3b﹣2ab)﹣(a﹣6b﹣ab)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式計(jì)算正確的是( )
A.2a2+a3=3a5
B.(-3x2y)2÷(xy)=9x3y
C.(2b23=8b5
D.2x3x5=6x5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c的圖象過A(2,0),B(0,-1)和C(4,5)三點(diǎn).

(1)求二次函數(shù)的解析式;

(2)設(shè)二次函數(shù)的圖象與x軸的另一個(gè)交點(diǎn)為D,求點(diǎn)D的坐標(biāo);

(3)在同一坐標(biāo)系中畫出直線y=x+1,并寫出當(dāng)x在什么范圍內(nèi)時(shí),一次函數(shù)的值大于二次函數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在七邊形ABCDEFG中,AB,ED的延長線相交于O點(diǎn).若圖中

∠1,∠2,∠3,∠4的角度和為220°,則∠BOD的度數(shù)為( )
A.40°
B.45°
C.50°
D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)P(2,-1)關(guān)于x軸對(duì)稱的點(diǎn)P′的坐標(biāo)是_____________.

查看答案和解析>>

同步練習(xí)冊(cè)答案