【題目】如圖,拋物線y=ax2+bx+c(a≠0)經(jīng)過點(-1,0),對稱軸為:直線x=1,則下列結(jié)論中正確的是:( )

A.a>0
B.當x>1時,y隨x的增大而增大
C. <0
D.x=3是一元二次方程ax2+bx+c=0(a≠0)的一個根

【答案】D
【解析】拋物線 的開口向下,則 ,故A不正確;
對稱軸為 ,當 時, 的增大而減小,故B不正確;
拋物線與 軸的交點在 軸的正半軸,則 ,故C不正確;
拋物線經(jīng)過點(-1,0),關于對稱軸 的對稱點為(3,0),則 是一元二次方程 的一個根.
所以答案是:D.


【考點精析】通過靈活運用二次函數(shù)的性質(zhì)和拋物線與坐標軸的交點,掌握增減性:當a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小;一元二次方程的解是其對應的二次函數(shù)的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知A=2x2+3xy﹣2x﹣1B=﹣x2+xy﹣1

1)求3A+6B;

2)若3A+6B的值與x無關,求y的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D,E分別在線段AB, AC上,CDBE相交于O點,已知AD=AE,現(xiàn)添加以下哪個條件仍不能判定ABE≌△ACD

A. BD= CEB. B=CC. BE=CDD. AB=AC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果批發(fā)商銷售每箱進價為40元的蘋果,物價部門規(guī)定每箱售價不得高于55元,市場調(diào)查發(fā)現(xiàn),若每箱以50元的價格調(diào)查,平均每天銷售90箱,價格每提高1元,平均每天少銷售3箱.
(1)求平均每天銷售量y(箱)與銷售價x(元/箱)之間的函數(shù)關系式.
(2)求該批發(fā)商平均每天的銷售利潤w(元)與銷售價x(元/箱)之間的函數(shù)關系式.
(3)當每箱蘋果的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖所示,直線,另一直線交,交,且,點為直線上一動點,點為直線上一動點,且

如圖,當點在點右邊且點在點左邊時,的平分線交的平分線于點,求的度數(shù);

如圖,當點在點右邊且點在點右邊時,的平分線交的平分線于點,求的度數(shù);

當點在點左邊且點在點左邊時,的平分線交的平分線所在直線交于點,請直接寫出的度數(shù),不說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某居民小區(qū)為了綠化小區(qū)環(huán)境,建設和諧家園,準備將一塊周長為76米的長方形空地,設計成長和寬分別相等的9塊小長方形,如圖所示,計劃在空地上種上各種花卉,經(jīng)市場預測,綠化每平方米空地造價210元,請計算,要完成這塊綠化工程,預計花費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x,y的方程組,則下列結(jié)論中正確的是(

①當a=5時,方程組的解是;
x,y的值互為相反數(shù)時,a=20;

③不存在一個實數(shù)a使得x=y;

④若,則a=2

A. ①②③④ B. ②③ C. ②③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點均在格點上,點A、B的坐標分別是A (3,2)、B(1,3)!鰽OB繞點O 逆時針旋轉(zhuǎn)90°后得到△A1OB1.

(1)畫出旋轉(zhuǎn)后的圖形;
(2)求線段OB在旋轉(zhuǎn)過程中所掃過的圖形面積(寫過程)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點 EF ABCD 對角線上兩點,在條件①DEBF;②∠ADE=∠CBF; ③AFCE;④∠AEB=∠CFD 中,添加一個條件,使四邊形 DEBF 是平行四邊形,可添加 的條件是( )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

同步練習冊答案