【題目】古運河是揚州的母親河為打造古運河風光帶,現(xiàn)有一段長為180米的河道整治任務(wù)由A、B兩工程隊先后接力完成工程隊每天整治12米,B工程隊每天整治8米,共用時20天.
根據(jù)題意,甲、乙兩名同學分別列出尚不完整的方程組如下:
甲:;乙:
根據(jù)甲、乙兩名問學所列的方程組,請你分別指出未知數(shù)x、y表示的意義,然后在方框中補全甲、乙兩名同學所列的方程組:
甲:x表示______,y表示______;
乙:x表示______,y表示______.
求A、B兩工程隊分別整治河道多少米寫出完整的解答過程
【答案】(1)20;180;180;20;A工程隊用的時間;B工程隊用的時間;A工程隊整治河道的米數(shù);B工程隊整治河道的米數(shù).(2)60米;120米.
【解析】
(1)此題蘊含兩個基本數(shù)量關(guān)系:A工程隊用的時間+B工程隊用的時間=20天,A工程隊整治河道的米數(shù)+B工程隊整治河道的米數(shù)=180米,由此進行解答即可;
(2)選擇其中一個方程組解答問題.
(1)甲同學:設(shè)A工程隊用的時間為天,B工程隊用的時間為天,由此列出的方程組為;
乙同學:A工程隊整治河道的米數(shù)為,B工程隊整治河道的米數(shù)為,由此列出的方程組為;
故答案依次為:、、、,A工程隊用的時間,B工程隊用的時間,A工程隊整治河道的米數(shù),B工程隊整治河道的米數(shù).
(2)選甲同學所列方程組解答如下:
,
得,
解得:,
把代入得:,
所以方程組的解為,
A工程隊整治河道的米數(shù)為:,
B工程隊整治河道的米數(shù)為:.
答:A工程隊整治河道米,B工程隊整治河道米.
科目:初中數(shù)學 來源: 題型:
【題目】某批發(fā)市場有中招考試文具套裝,其中A品牌的批發(fā)價是每套20元,B品牌的批發(fā)價是每套25元,小王需購買A、B兩種品牌的文具套裝共1000套.
(1)若小王按需購買A、B兩種品牌文具套裝共用22000元,則各購買多少套?
(2)憑會員卡在此批發(fā)市場購買商品可以獲得8折優(yōu)惠,會員卡費用為500元.若小王購買會員卡并用此卡按需購買1000套文具套裝,共用了y元,設(shè)A品牌文具套裝買了x包,請求出y與x之間的函數(shù)關(guān)系式.
(3)若小王購買會員卡并用此卡按需購買1000套文具套裝,共用了20000元,他計劃在網(wǎng)店包郵銷售這兩種文具套裝,每套文具套裝小王需支付郵費8元,若A品牌每套銷售價格比B品牌少5元,請你幫他計算,A品牌的文具套裝每套定價不低于多少元時才不虧本(運算結(jié)果取整數(shù))?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知下列方程,屬于一元一次方程的有( 。
①x﹣2=;②0.5x=1;③=8x﹣1;④x2﹣4x=8;⑤x=0;⑥x+2y=0.
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某文具商店銷售功能相同的A、B兩種品牌的計算器,購買2個A品牌和3個B品牌的計算器共需156元;購買3個A品牌和1個B品牌的計算器共需122元.
(1)求這兩種品牌計算器的單價;
(2)學校開學前夕,該商店對這兩種計算器開展了促銷活動,具體辦法如下:A品牌計算器按原價的八折銷售,B品牌計算器5個以上超出部分按原價的七折銷售,設(shè)購買x個A品牌的計算器需要y1元,購買x個B品牌的計算器需要y2元,分別求出y1、y2關(guān)于x的函數(shù)關(guān)系式;
(3)小明準備聯(lián)系一部分同學集體購買同一品牌的計算器,若購買計算器的數(shù)量超過5個,購買哪種品牌的計算器更合算?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠CAB=50°.按以下步驟作圖:①以點A為圓心,小于AC的長為半徑畫弧,分別交AB、AC于點E、F;②分別以點E、F為圓心,大于 EF的長為半徑畫弧,兩弧相交于點G;③作射線AG交BC邊于點D.則∠ADC的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A、B在反比例函數(shù)y= (k>0,x>0)的圖象上,過點A、B作x軸的垂線,垂足分別為M、N,延長線段AB交x軸于點C,若OM=MN=NC,△AOC的面積為6,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】折疊三角形紙片ABC,使點A落在BC邊上的點F,且折痕DE∥BC,若∠A=75°,∠C=60°,則∠BDF=____________________________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,BC=5 ,∠C=30°.點D從點C出發(fā)沿CA方向以每秒2個單位長的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以每秒1個單位長的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(t>0).過點D作DF⊥BC于點F,連接DE、EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.
(3)當t為何值時,△DEF為直角三角形?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com