【題目】方程2x﹣1=﹣5的解是( 。

A. 3 B. ﹣3 C. 2 D. ﹣2

【答案】D

【解析】

試題移項,得:2x=-4

x=-2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,折疊長方形紙片ABCD,使點(diǎn)D落在邊BC上的點(diǎn)F處,折痕為AE,AB=CD=6,AD=BC=10,試求EC的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=BC=5,D是AB的中點(diǎn),點(diǎn)E、F分別在AC、BC邊上運(yùn)動(點(diǎn)E不與點(diǎn)A、C重合),且保持AE=CF,連接DE、DF、EF,在此運(yùn)動變化的過程中,△CEF周長的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將拋物線y=5x2先向左平移2個單位,再向上平移3個單位后得到新的拋物線,則新拋物線的表達(dá)式是( )
A.y=5(x+2)2+3
B.y=5(x﹣2)2+3
C.y=5(x﹣2)2﹣3
D.y=5(x+2)2﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】單項式xm1y3與4xyn的和是單項式,則nm的值是(
A.3
B.6
C.8
D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:我們把三角形被一邊中線分成的兩個三角形叫做“朋友三角形”.
性質(zhì):“朋友三角形”的面積相等.
如圖1,在△ABC中,CD是AB邊上的中線.
那么△ACD和△BCD是“朋友三角形”,并且SACD=SBCD
應(yīng)用:如圖2,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=AD=4,BC=6,點(diǎn)E在BC上,點(diǎn)F在AD上,BE=AF,AE與BF交于點(diǎn)O.

(1)求證:△AOB和△AOF是“朋友三角形”;
(2)連接OD,若△AOF和△DOF是“朋友三角形”,求四邊形CDOE的面積.
拓展:如圖3,在△ABC中,∠A=30°,AB=8,點(diǎn)D在線段AB上,連接CD,△ACD和△BCD是“朋友三角形”,將△ACD沿CD所在直線翻折,得到△A′CD,若△A′CD與△ABC重合部分的面積等于△ABC面積的 ,則△ABC的面積是(請直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EAD邊的中點(diǎn),BEAC,垂足為點(diǎn)F,連接DF,分析下列四個結(jié)論:①△AEF∽△CAB;②CF=2AF;③DFDC;④tan∠CAD.其中正確的結(jié)論有( )

A. 4個 B. 3個 C. 2個 D. 1個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC在平面直角坐標(biāo)系內(nèi),頂點(diǎn)的坐標(biāo)分別為A﹣15),B﹣4,1),C﹣1,1)將△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)90°,得到△AB′C′,點(diǎn)BC的對應(yīng)點(diǎn)分別為點(diǎn)B′,C′,

1)畫出△AB′C′

2)寫出點(diǎn)B′,C′的坐標(biāo);

3)求出在△ABC旋轉(zhuǎn)的過程中,點(diǎn)C經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若2m﹣4與3m﹣1是同一個數(shù)兩個不同的平方根,則m的值(
A.﹣3
B.1
C.﹣3或1
D.﹣1

查看答案和解析>>

同步練習(xí)冊答案