【題目】如圖1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,點(diǎn)M從點(diǎn)D出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng),同時(shí),點(diǎn)N從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng).其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).過點(diǎn)N作NP⊥AD于點(diǎn)P,連接AC交NP于點(diǎn)Q,連接MQ.設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)AM= ,AP= .(用含t的代數(shù)式表示)
(2)當(dāng)四邊形ANCP為平行四邊形時(shí),求t的值
(3)如圖2,將△AQM沿AD翻折,得△AKM,是否存在某時(shí)刻t,
①使四邊形AQMK為為菱形,若存在,求出t的值;若不存在,請(qǐng)說明理由
②使四邊形AQMK為正方形,則AC= .
【答案】(1)8﹣2t;2+t;(2)2;(3)①存在時(shí)刻t=1,使四邊形AQMK為菱形.理由詳見解析;②8.
【解析】試題分析:(1)由DM=2t,根據(jù)AM=AD-DM即可求出AM=6-2t;先證明四邊形CNPD為矩形,得出DP=CN=4-t,則AP=AD-DP=2+t;
(2)根據(jù)四邊形ANCP為平行四邊形時(shí),可得4-t=6-(6=4-t),解方程即可;
(3))①由NP⊥AD,QP=PK,可得當(dāng)PM=PA時(shí)有四邊形AQMK為菱形,列出方程4-t-2t=6-(4-t),求解即可,
②要使四邊形AQMK為正方形,由∠ADC=90°,可得∠CAD=45°,所以四邊形AQMK為正方形,則CD=AD,由AD=8,可得CD=6,利用勾股定理求得AC即可.
試題解析:(1)6﹣2t,2+t.
(2)∵四邊形ANCP為平行四邊形時(shí),CN=AP,
∴4﹣t=t+2,解得t=1,
(3)①∵NP⊥AD,QP=PK,
∴當(dāng)PM=PA時(shí)有四邊形AQMK為菱形,
∴4﹣t﹣2t=2+t,解得t=0.5,
∴存在時(shí)刻t=0.5,使四邊形AQMK為菱形.
②AC=6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將△AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去….若點(diǎn)A(,0),B(0,2),則點(diǎn)B2016的坐標(biāo)為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某學(xué)校開展“遠(yuǎn)是君山,磨礪意志,保護(hù)江豚,愛鳥護(hù)鳥”為主題的遠(yuǎn)足活動(dòng).已知學(xué)校與君山島相距24千米,遠(yuǎn)足服務(wù)人員騎自行車,學(xué)生步行,服務(wù)人員騎自行車的平均速度是學(xué)生步行平均速度的2.5倍,服務(wù)人員與學(xué)生同時(shí)從學(xué)校出發(fā),到達(dá)君山島時(shí),服務(wù)人員所花時(shí)間比學(xué)生少用了3.6小時(shí),求學(xué)生步行的平均速度是多少千米/小時(shí).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件是必然事件的是( 。
A. 若a是實(shí)數(shù),則|a|≥0 B. 拋一枚硬幣,正面朝上
C. 明天會(huì)下雨 D. 打開電視,正在播放新聞
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(4,﹣1).
(1)試作出△ABC以C為旋轉(zhuǎn)中心,沿順時(shí)針方向旋轉(zhuǎn)90°后的圖形△A1B1C;
(2)以原點(diǎn)O為對(duì)稱中心,再畫出與△ABC關(guān)于原點(diǎn)O對(duì)稱的△A2B2C2,并寫出點(diǎn)C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有關(guān)“總量=________”的實(shí)際問題:解決這類問題一般是先設(shè)其中一部分量為x,再用x表示其他各部分量,然后根據(jù)等量關(guān)系列出方程即可.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com