【題目】如圖,AC是矩形ABCD的對(duì)角線,過AC的中點(diǎn)O作EF⊥AC,交BC于點(diǎn)E,交AD于點(diǎn)F,連接AE,CF.
(1)求證:四邊形AECF是菱形;
(2)若AB=,∠DCF=30°,求四邊形AECF的面積.(結(jié)果保留根號(hào))
【答案】(1)證明見解析;(2).
【解析】
試題分析:(1)由過AC的中點(diǎn)O作EF⊥AC,根據(jù)線段垂直平分線的性質(zhì),可得AF=CF,AE=CE,OA=OC,然后由四邊形ABCD是矩形,易證得△AOF≌△COE,則可得AF=CE,繼而證得結(jié)論;
(2)由四邊形ABCD是矩形,易求得CD的長,然后利用三角函數(shù)求得CF的長,繼而求得答案.
試題解析:(1)證明:∵O是AC的中點(diǎn),且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四邊形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,∵∠AFO=∠CEO,∠AOF=∠COE,OA=OC,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四邊形AECF是菱形;
(2)解:∵四邊形ABCD是矩形,∴CD=AB=,在Rt△CDF中,cos∠DCF=,∠DCF=30°,∴CF==2,∵四邊形AECF是菱形,∴CE=CF=2,∴四邊形AECF是的面積為:ECAB=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)據(jù)1,2,8,5,3,9,5,4,5,4的眾數(shù)是_________,中位數(shù)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)已知a+b=-3,ab=5,求多項(xiàng)式4a2b+4ab2-4a-4b的值;
(2)已知x2-3x-1=0,求代數(shù)式3-3 x2+9x的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=2,∠BAD=60°,過點(diǎn)D作DE⊥AB于點(diǎn)E,DF⊥BC于點(diǎn)F.
(1)如圖1,連接AC分別交DE、DF于點(diǎn)M、N,求證:MN=AC;
(2)如圖2,將△EDF以點(diǎn)D為旋轉(zhuǎn)中心旋轉(zhuǎn),其兩邊DE′、DF′分別與直線AB、BC相交于點(diǎn)G、P,連接GP,當(dāng)△DGP的面積等于時(shí),求旋轉(zhuǎn)角的大小并指明旋轉(zhuǎn)方向.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,輪船甲位于碼頭O的正西方向A處,輪船乙位于碼頭O的正北方向C處,測得∠CAO=45°,輪船甲自西向東勻速行駛,同時(shí)輪船乙沿正北方向勻速行駛,它們的速度分別為45km/h和36km/h,經(jīng)過0.1h,輪船甲行駛至B處,輪船乙行駛至D處,測得∠DBO=58°,此時(shí)B處距離碼頭O多遠(yuǎn)?(參考數(shù)據(jù):sin58°≈0.85,cos58°≈0.53,tan58°≈1,60)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形OABC中,OA=3,AB=6,以O(shè)A,OC所在的直線為坐標(biāo)軸,建立如圖1的平面直角坐標(biāo)系.將矩形OABC繞點(diǎn)O順時(shí)針方向旋轉(zhuǎn),得到矩形ODEF,當(dāng)點(diǎn)B在直線DE上時(shí),設(shè)直線DE和x軸交于點(diǎn)P,與y軸交于點(diǎn)Q.
(1)求證:△BCQ≌△ODQ;
(2)求點(diǎn)P的坐標(biāo);
(3)若將矩形OABC向右平移(圖2),得到矩形ABCG,設(shè)矩形ABCG與矩形ODEF重疊部分的面積為S,OG=x,請(qǐng)直接寫出x≤3時(shí),S與x之間的函數(shù)關(guān)系式,并且寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】震驚世界的MH370失聯(lián)事件發(fā)生后第30天,中國“海巡01”輪在南印度洋海域搜索過程中,首次偵聽到疑是飛機(jī)黑匣子的脈沖信號(hào),探測到的信號(hào)所在海域水深4500米左右,其中4500用科學(xué)記數(shù)法表示為( )
A.4.5×102
B.4.5×103
C.45.0×102
D.0.45×104
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知Rt△ABC中,∠B=90°,AC=20,AB=10,P是邊AC上一點(diǎn)(不包括端點(diǎn)A、C),過點(diǎn)P作PE⊥BC于點(diǎn)E,過點(diǎn)E作EF∥AC,交AB于點(diǎn)F.設(shè)PC=x,PE=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)是否存在點(diǎn)P使△PEF是Rt△?若存在,求此時(shí)的x的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com