9、如圖,在△ABC中,已知∠ABC和∠ACB的平分線相交于點D,過D點作EF∥BC,交AB于點E,交AC于點F,若BE+CF=9,則線段EF的長為( 。
分析:由平行線的性質(zhì)可得內(nèi)錯角∠EDB=∠DBC,∠FDC=∠DCB,再由角平分線的性質(zhì)可得∠ABD=∠EDB,∠ACD=∠FDC,即BE=DE,DF=FC,進(jìn)而可求EF的長.
解答:解:∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB,
∵BD、CD分別平分∠ABC與∠ACB,
∴∠ABD=∠DBC,∠ACD=∠DCB,
∴∠ABD=∠EDB,∠ACD=∠FDC,
即BE=DE,DF=FC,
EF=DE+DF=BE+FC=9.
故選A.
點評:本題主要考查了平行線的性質(zhì)以及角平分線的性質(zhì)和等腰三角形的判定及性質(zhì)問題,能夠熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案