【題目】如圖,△ABC的面積為3,BD:DC=2:1,E是AC的中點,AD與BE相交于點P,那么四邊形PDCE的面積為( 。
A. B. C. D.
【答案】B
【解析】
連接CP.設△CPE的面積是x,△CDP的面積是y.根據(jù)BD:DC=2:1,E為AC的中點,得△BDP的面積是2y,△APE的面積是x,進而得到△ABP的面積是4x.再根據(jù)△ABE的面積是△BCE的面積相等,得4x+x=2y+x+y,解得y= x,再根據(jù)△ABC的面積是3即可求得x、y的值,從而求解.
連接CP,
設△CPE的面積是x,△CDP的面積是y.
∵BD:DC=2:1,E為AC的中點,
∴△BDP的面積是2y,△APE的面積是x,
∵BD:DC=2:1
∴△ABD的面積是4x+2y
∴△ABP的面積是4x.
∴4x+x=2y+x+y,
解得y= x.
又∵△ABC的面積為3
∴4x+x= ,
x= .
則四邊形PDCE的面積為x+y= .
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與x軸、y軸分別交于點A,B,另一直線與x軸、y軸分別交于點C,D,兩直線相交于點M.
求點M的坐標;
連接AD,求△AMD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,已知點D在AB上,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,且M為EC的中點.
(1)連接DM并延長交BC于N,求證:CN=AD;
(2)求證:△BMD為等腰直角三角形;
(3)將△ADE繞點A逆時針旋轉(zhuǎn)90°時(如圖②所示位置),其它條件不變,△BMD為等腰直角三角形的結(jié)論是否仍成立?若成立,請證明:若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B兩店分另選5名銷售員某月的銷售額(單位:萬元)進行分析,數(shù)據(jù)如下圖表(不完整):
平均數(shù) | 中位數(shù) | 眾數(shù) | |
A店 | 8.5 |
|
|
B店 |
| 8 | 10 |
(1)根據(jù)圖a數(shù)據(jù)填充表格b所缺的數(shù)據(jù);
(2)如果A店想讓一半以上的銷售員達到銷售目標,你認為月銷售額定為多少合適?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點 A,B,C 的坐標分別是(2,1),(6,1),(3,5),若△A1B1C1 與△ABC 關于x 軸對稱
(1)在平面直角坐標系中畫出△A1B1C1,并寫出 A1,B1,C1 三個點的坐標
(2)求出△A1B1C1的面積
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】國慶假期期間,某單位8名領導和320名員工集體外出進行素質(zhì)拓展活動,準備租用45座大車或30座小車.若租用2輛大車3輛小車共需租車費1700元;若租用3輛大車2輛小車共需租車費1800元
(1)求大、小車每輛的租車費各是多少元?
(2)若每輛車上至少要有一名領導,每個人均有座位,且總租車費用不超過3100元,求最省錢的租車方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分線,DE⊥AB于E點.
(1)求∠EDA的度數(shù);
(2)AB=10,AC=8,DE=3,求S△ABC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】徐州至北京的高鐵里程約為700km,甲、乙兩人從徐州出發(fā),分別乘坐“徐州號”高鐵A與“復興號”高鐵B前往北京.已知A車的平均速度比B車的平均速度慢80km/h,A車的行駛時間比B車的行駛時間多40%,兩車的行駛時間分別為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)∠ABE=15°,∠BAD=40°,求∠BED的度數(shù);
(2)在△BED中作BD邊上的高;
(3)若△ABC的面積為40,BD=5,則△BDE 中BD邊上的高為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com