銳角△ABC中,BC=6,S△ABC=12,兩動點M,N分別在邊AB,AC上滑動,且MN∥BC,以MN為邊向下作正方形MPQN,設其邊長為x,正方形MPQN與△ABC公共部分的面積為y(y>0)
(1)△ABC中邊BC上高AD=______;
(2)當x=______時,PQ恰好落在邊BC上(如圖1);
(3)當PQ在△ABC外部時(如圖2),求y關于x的函數(shù)關系式(注明x的取值范圍),并求出x為何值時y最大,最大值是多少?

【答案】分析:(1)本題利用矩形的性質和相似三角形的性質,根據(jù)MN∥BC,得△AMN∽△ABC,求出△ABC中邊BC上高AD的長度.
(2)因為正方形的位置在變化,但是△AMN∽△ABC沒有改變,利用相似三角形對應邊上高的比等于相似比,得出等量關系,代入解析式,
(3)用含x的式子表示矩形MEFN邊長,從而求出面積的表達式.
解答:解:(1)由BC=6,S△ABC=12,得AD=4;

(2)當PQ恰好落在邊BC上時,
∵MN∥BC,∴△AMN∽△ABC.
,
=,x=2.4(或);

(3)設BC分別交MP,NQ于E,F(xiàn),則四邊形MEFN為矩形.
設ME=NF=h,AD交MN于G(如圖2)GD=NF=h,AG=4-h.
∵MN∥BC,
∴△AMN∽△ABC.
,即,

∴y=MN•NF=x(-x+4)=-x2+4x(2.4<x<6),
配方得:y=-(x-3)2+6.
∴當x=3時,y有最大值,最大值是6.
點評:本題結合相似三角形的性質及矩形面積計算方法,考查二次函數(shù)的綜合應用,解題時,要始終抓住相似三角形對應邊上高的比等于相似比,表示相關邊的長度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

精英家教網(wǎng)閱讀材料,解答問題:
命題:如圖,在銳角△ABC中,BC=a,CA=b,AB=c,△ABC的外接圓半徑為R,則
a
sinA
=
b
sinB
=
c
sinC
=2R.
證明:連接CO并延長交⊙O于點D,連接DB,則∠D=∠A.
因為CD是⊙O的直徑,所以∠DBC=90°,
在Rt△DBC中,sin∠D=
BC
DC
=
a
2R

所以sinA=
a
2R
,即
a
sinA
=2R,
同理:
b
sinB
=2R,
c
sinC
=2R,
a
sinA
=
b
sinB
=
c
sinC
=2R,
請閱讀前面所給的命題和證明后,完成下面(1)(2)兩題:
(1)前面閱讀材料中省略了“
b
sinB
=2R,
c
sinC
=2R”的證明過程,請你把“
b
sinB
=2R”的證明過程補寫出來.
(2)直接運用閱讀材料中命題的結論解題,已知銳角△ABC中,BC=
3
,CA=
2
,∠A=60°,求△ABC的外接圓半徑R及∠C.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在銳角△ABC中,BC=9,AH⊥BC于點H,且AH=6,點D為AB邊上的任意一點,過點D作DE∥BC,交AC于點E.設△ADE的高AF為x(0<x<6),以DE為折線將△ADE翻折,所得的△A′DE與梯形DBCE重疊部分的面積記為y(精英家教網(wǎng)點A關于DE的對稱點A′落在AH所在的直線上).
(1)當x=1時,y=
 
;
(2)求出當0<x≤3時,y與x的函數(shù)關系式;
(3)求出3<x<6時,y與x的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在銳角△ABC中,BC=6,∠A=60°,則△ABC外接圓的直徑為
4
3
4
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在銳角△ABC中,BC=9,AH⊥BC于點H,且AH=6,點D為AB邊上的任意一點,過點D作DE∥BC,交AC于點E.設△ADE的高AF為x(0<x<6),以DE為折線將△ADE翻折,所得的△A'DE與梯形DBCE重疊部分的面積記為y(點A關于DE的對稱點A'落在AH所在的直線上).
(1)分別求出當0<x≤3與3<x<6時,y與x的函數(shù)關系式;
(2)當x取何值時,y的值最大,最大值是精英家教網(wǎng)多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在面積為75cm2的銳角△ABC中,BC=15cm,從這張硬紙片上剪下一個正方形DEFG,使它的一邊EF在BC上,頂點D、G分別在AB,AC上.求這個正方形的邊長?

查看答案和解析>>

同步練習冊答案