Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,則它的外心與頂點C的距離為( )cm.
A.5
B.6
C.7
D.8
【答案】分析:直角三角形的外心與斜邊中點重合,因此外心到直角頂點的距離正好是斜邊的一半;由勾股定理易求得斜邊AB的長,進而可求出外心到直角頂點C的距離.
解答:解:Rt△ABC中,∠C=90°,AC=6cm,BC=8cm;
由勾股定理,得:AB==10cm;
斜邊上的中線是 AB=5cm.
因而外心到直角頂點的距離等于斜邊的中線長5cm.
故選A.
點評:本題考查的是直角三角形的外接圓半徑的求法,重點在于理解直角三角形的外接圓是以斜邊中點為圓心,以斜邊的一半為半徑的圓.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足為D,交AB于點E.又點F在DE的精英家教網(wǎng)延長線上,且AF=CE.求證:四邊形ACEF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠BAC=90°,點D、E、F分別是三邊的中點,且CF=3cm,則DE=
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,Rt△ABC中,AC⊥BC,CD⊥AB于D,AC=8,BC=6,則AD=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等腰Rt△ABC中,∠C=90°,正方形DEFG的頂點D在邊AC上,點E、F在邊AB上,精英家教網(wǎng)點G在邊BC上.
(1)求證:AE=BF;
(2)若BC=
2
cm,求正方形DEFG的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,Rt△ABC中,∠C=90°,D為AB的中點,DE⊥AB,AB=20,AC=12,則四邊形ADEC的面積為
 

查看答案和解析>>

同步練習冊答案