【題目】已知:如圖,在四邊形ABCD中,ADBC.點ECD邊上一點,AEBE分別為∠DAB和∠CBA的平分線.

(1)請你添加一個適當(dāng)?shù)臈l件   ,使得四邊形ABCD是平行四邊形,并證明你的結(jié)論;

(2)作線段AB的垂直平分線交AB于點O,并以AB為直徑作⊙O(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);

(3)在(2)的條件下,⊙O交邊AD于點F,連接BF,交AE于點G,若AE=4,sinAGF=,求⊙O的半徑.

【答案】(1)當(dāng)AD=BC時,四邊形ABCD是平行四邊形,理由見解析;(2)作出相應(yīng)的圖形見解析;(3)圓O的半徑為2.5.

【解析】(1)添加條件AD=BC,利用一組對邊平行且相等的四邊形為平行四邊形驗證即可;

(2)作出相應(yīng)的圖形,如圖所示;

(3)由平行四邊形的對邊平行得到ADBC平行,可得同旁內(nèi)角互補(bǔ),再由AEBE為角平分線,可得出AEBE垂直,利用直徑所對的圓周角為直角,得到AFFB垂直,可得出兩銳角互余,根據(jù)角平分線性質(zhì)及等量代換得到∠AGF=AEB,根據(jù)sinAGF的值,確定出sinAEB的值,求出AB的長,即可確定出圓的半徑.

(1)當(dāng)AD=BC時,四邊形ABCD是平行四邊形,理由為:

證明:∵ADBC,AD=BC,

∴四邊形ABCD為平行四邊形;

故答案為:AD=BC;

(2)作出相應(yīng)的圖形,如圖所示;

(3)ADBC,

∴∠DAB+CBA=180°,

AEBE分別為∠DAB與∠CBA的平分線,

∴∠EAB+EBA=90°,

∴∠AEB=90°,

AB為圓O的直徑,點F在圓O上,

∴∠AFB=90°,

∴∠FAG+FGA=90°,

AE平分∠DAB,

∴∠FAG=EAB,

∴∠AGF=ABE,

sinABE=sinAGF=

AE=4,

AB=5,

則圓O的半徑為2.5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加快城鄉(xiāng)對接,建設(shè)全域美麗鄉(xiāng)村,某地區(qū)對A、B兩地間的公路進(jìn)行改建.如圖,A、B兩地之間有一座山,汽車原來從A地到B地需途徑C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車可直接沿直線AB行駛.已知BC=80千米,∠A=45°,∠B=30°.

(1)開通隧道前,汽車從A地到B地大約要走多少千米?

(2)開通隧道后,汽車從A地到B地大約可以少走多少千米?(結(jié)果精確到0.1千米)(參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點DE分別是等邊三角形ABC的邊BC、AC上的點,連接AD、BE交于點O,且ABD≌△BCE

1)若AB=3,AE=2,則BD= ;

2)若∠CBE=15°,則∠AOE=

3)若∠BAD=a,猜想∠AOE的度數(shù),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,點EAD上的一點,有AE=4BE的垂直平分線交BC的延長線于點F,連結(jié)EFCD于點G.GCD的中點,則BC的長是___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ACB和△ECD都是等腰直角三角形,△ACB的頂點A在△ECD的斜邊DE上,若,則=___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,BDABC的角平分線,且BD=BC,EBD延長線上的一點,BE=BA,過EEFAB,F為垂足.下列結(jié)論:①△ABDEBC;②∠BCE+BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正確的是(  。

A.①②③B.①③④C.①②④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OA的方向是北偏東15°,OB的方向是西偏北50度.

(1)若AOC=AOB,則OC的方向是 ;

(2)OD是OB的反向延長線,OD的方向是 ;

(3)BOD可看作是OB繞點O逆時針方向至OD,作BOD的平分線OE,OE的方向是 ;

(4)在(1)、(2)、(3)的條件下,COE=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD是經(jīng)過∠BCA頂點C的一條直線,CA=CB.E、F分別是直線CD上兩點,且∠BEC=∠CFA=∠α.

(1)若直線CD經(jīng)過∠BCA的內(nèi)部,且E,F(xiàn)在射線CD上.

①如圖1,若∠BCA=90°,∠α=90°,則BE CF;

②如圖2,若0°<∠BCA<180°,請?zhí)砑右粋關(guān)于∠α與∠BCA關(guān)系的條件 ,使①中的結(jié)論仍然成立,并說明理由;

(2)如圖3,若直線CD經(jīng)過∠BCA的外部,∠α=∠BCA,請?zhí)岢鲫P(guān)于EF,BE,AF三條線段數(shù)量關(guān)系的合理猜想: .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為 1 的小正方形組成的網(wǎng)格中,有如圖 所示的 A. B 兩點,在格點中任 意放置點 C,恰好能使ABC 的面積為 1,則這樣的 C 點有 ( )

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

同步練習(xí)冊答案