【題目】如圖,直線y=x與雙曲線y= (k>0)交于A、B兩點,且點A的橫坐標(biāo)為4.
(1)求k的值;
(2)若雙曲線y= (k>0)上一點C的縱坐標(biāo)為8,求△AOC的面積.
【答案】(1)8;(2)15.
【解析】分析:(1)根據(jù)正比例函數(shù)先求出點A的坐標(biāo),從而求出了k值為8;
(2)根據(jù)k的幾何意義可知,所以.
本題解析:
解:(1)∵點A的橫坐標(biāo)為4,點A在直線y=x上,
∴點A的縱坐標(biāo)為y=×4=2,即A(4,2).
又∵點A(4,2)在雙曲線y=上,
∴k=2×4=8.
(2)∵點C在雙曲線y=上,且點C縱坐標(biāo)為8,∴C(1,8).
如圖,過點C作CM⊥x軸于M,過點A作AN⊥x軸于N.
∵S△COM=S△AON==4,
∴S△AOC=S四邊形CMNA=×(|yA|+|yC|)×(|xA|-|xc|)=15.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,A(-2,0) ,B(-1,2) ,C(1,0) ,連接 AB,點 D 為 AB 的中點,連接 OB 交 CD于點 E,則四邊形 DAOE 的面積為( )
A. 1. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上有三個點A,B,C,回答下列問題:
(1)若將點B向右移動6個單位后,三個點所表示的數(shù)中最小的數(shù)是多少?
(2)在數(shù)軸上找一點D,使點D到A,C兩點的距離相等,寫出點D表示的數(shù);
(3)在點B左側(cè)找一點E,使點E到點A的距離是到點B的距離的2倍,并寫出點E表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家(記為A)、他上學(xué)的學(xué)校(記為B)、書店(記為C)依次坐落在一條東西走向的大街上,小明家位于學(xué)校西邊250米處,書店位于學(xué)校東邊100米處,小明中午放學(xué)后,到書店買本輔導(dǎo)書,然后回家吃中午飯,下午直接去學(xué)校上課.
(1)試用數(shù)軸表示出小明家(A)、學(xué)校(B)、書店(C)的位置;
(2)計算出小明家與書店的距離;
(3)小明從中午放學(xué)離校到下午上學(xué)到校一共走了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某自行車廠一周計劃生產(chǎn)1400輛自行車,平均每天生產(chǎn)200輛,由于各種原因?qū)嶋H每天生產(chǎn)量與計劃量相比有出入表是某周的生產(chǎn)情況超產(chǎn)為正、減產(chǎn)為負(fù):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減 |
根據(jù)記錄可知前三天共生產(chǎn)多少輛;
產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)多少輛;
該廠實行每周計件工資制,每生產(chǎn)一輛車可得60元,若超額完成任務(wù),則超過部分每輛另獎15元;少生產(chǎn)一輛扣15元,那么該廠工人這一周的工資總額是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上有A,B,C,D四個點,它們與原點的距離分別為1,2,3,4個單位長度,且點A,C在原點左邊,點B,D在原點右邊.
(1)請寫出點A,B,C,D分別表示的數(shù);
(2)比較這四個數(shù)的大小,并用“>”連接.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(b>a>0)與x軸最多有一個交點,現(xiàn)有以下四個結(jié)論:
①該拋物線的對稱軸在y軸左側(cè);
②關(guān)于x的方程ax2+bx+c+2=0無實數(shù)根;
③a﹣b+c≥0;
④ 的最小值為3.
其中,正確結(jié)論的個數(shù)為( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩站相距240千米,從甲站開出一列慢車,速度為每小時80千米,從乙站開出一列快車,速度為每小時120千米.
(1)若兩車同時開出,背向而行,則經(jīng)過多長時間兩車相距540千米?
(2)若兩車同時開出,同向而行(快車在后),則經(jīng)過多長時間快車可追上慢車?
(3)若兩車同時開出,同向而行(慢車在后),則經(jīng)過多長時間兩車相距300千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A、B兩點,與y軸交于點C(0,3),且此拋物線的頂點坐標(biāo)為M(﹣1,4).
(1)求此拋物線的解析式;
(2)設(shè)點D為已知拋物線對稱軸上的任意一點,當(dāng)△ACD與△ACB面積相等時,求點D的坐標(biāo);
(3)點P在線段AM上,當(dāng)PC與y軸垂直時,過點P作x軸的垂線,垂足為E,將△PCE沿直線CE翻折,使點P的對應(yīng)點P′與P、E、C處在同一平面內(nèi),請求出點P′坐標(biāo),并判斷點P′是否在該拋物線上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com