【題目】如圖,一個(gè)三角形的紙片ABC,其中∠A=∠C,
(1)把△ABC紙片按 (如圖1) 所示折疊,使點(diǎn)A落在BC邊上的點(diǎn)F處,DE是折痕.說(shuō)明 BC∥DF;
(2)把△ABC紙片沿DE折疊,當(dāng)點(diǎn)A落在四邊形BCED內(nèi)時(shí) (如圖2),探索∠C與∠1+∠2之間的大小關(guān)系,并說(shuō)明理由;
(3)當(dāng)點(diǎn)A落在四邊形BCED外時(shí) (如圖3),探索∠C與∠1、∠2之間的大小關(guān)系.(直接寫(xiě)出結(jié)論)
【答案】(1)見(jiàn)解析;(2)∠1+∠2=2∠C;(3)∠1-∠2=2∠C.
【解析】
(1)根據(jù)折疊的性質(zhì)得∠DFE=∠A,由已知得∠A=∠C,于是得到∠DFE=∠C,即可得到結(jié)論;
(2)先根據(jù)四邊形的內(nèi)角和等于360°得出∠A+∠A′=∠1+∠2,再由圖形翻折變換的性質(zhì)即可得出結(jié)論;
(3)∠A′ED=∠AED(設(shè)為α),∠A′DE=∠ADE(設(shè)為β),于是得到∠2+2α=180°,∠1=β-∠BDE=β-(∠A+α),推出∠2-∠1=180°-(α+β)+∠A,根據(jù)三角形的內(nèi)角和得到∠A=180°-(α+β),證得∠2-∠1=2∠A,于是得到結(jié)論.
解:(1) 由折疊知∠A=∠DFE,
∵∠A=∠C,
∴∠DFE=∠C,
∴BC∥DF;
(2)∠1+∠2=2∠A.理由如下:
∵∠1+2∠AED=180°, ∠2+2∠ADE=180°,
∴∠1+∠2+2(∠ADE+∠AED)=360°.
∵∠A+∠ADE+∠AED=180°,
∴∠ADE+∠AED=180°-∠A,
∴∠1+∠2+2(180°-A)=360°,
即∠1+∠2=2∠C.
(3)∠1-∠2=2∠A.
∵2∠AED+∠1=180°,2∠ADE-∠2=180°,
∴2(∠ADE+∠AED)+∠1-∠2=360°.
∵∠A+∠ADE+∠AED=180°,
∴∠ADE+∠AED=180°-∠A,
∴∠1-∠2+2(180°-∠A)=360°,
即∠1-∠2=2∠C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有A,B兩個(gè)轉(zhuǎn)盤(pán),其中轉(zhuǎn)盤(pán)A被分成4等份,轉(zhuǎn)盤(pán)B被分成3等份,并在每一份內(nèi)標(biāo)上數(shù)字.現(xiàn)甲、乙兩人同時(shí)各轉(zhuǎn)動(dòng)其中一個(gè)轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)停止后(當(dāng)指針指在邊界線上時(shí)視為無(wú)效,重轉(zhuǎn)),若將A轉(zhuǎn)盤(pán)指針指向的數(shù)字記為x,B轉(zhuǎn)盤(pán)指針指向的數(shù)字記為y,從而確定點(diǎn)P的坐標(biāo)為P(x,y).
(1)請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法寫(xiě)出所有可能得到的點(diǎn)P的坐標(biāo);
(2)計(jì)算點(diǎn)P在函數(shù)y= 圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=115°,∠ACF=25°,則∠FEC=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,點(diǎn)是邊上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作直線,設(shè)交的角平分線于點(diǎn),交的外角平分線于點(diǎn).
(1)求證:;
(2)當(dāng)點(diǎn)運(yùn)動(dòng)到何處時(shí),四邊形是矩形?并證明你的結(jié)論.
(3)當(dāng)點(diǎn)運(yùn)動(dòng)到何處,且滿(mǎn)足什么條件時(shí),四邊形是正方形?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖EF∥CD,∠1+∠2=180°.
(1)試說(shuō)明GD∥CA;
(2)若CD平分∠ACB,DG平分∠CDB,且∠A=40°,求∠ACB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】菱形ABCD中,∠B=60°,AB=4,點(diǎn)E在BC上,CE=2,若點(diǎn)P是菱形上異于點(diǎn)E的另一點(diǎn),CE=CP,則EP的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點(diǎn).
(1)求證:△ACE≌△BCD;
(2)若AD=5,BD=12,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形中,,,為上一點(diǎn),分別以,為折痕將兩個(gè)角(,)向內(nèi)折起,點(diǎn),恰好都落在邊的點(diǎn)處.若,,則________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算題計(jì)算:(﹣2017)0+|1﹣ |﹣2cos45°+(﹣ )﹣2;
(1)計(jì)算:(﹣2017)0+|1﹣ |﹣2cos45°+(﹣ )﹣2;
(2)解不等式組: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com