【題目】已知:.求作:一個角,使它等于.步驟如下:如圖,
(1)作射線
(2)以為圓心,任意長為半徑作弧,交于,交于;
(3)以為圓心,為半徑作弧,交于;
(4)以為圓心,為半徑作弧,交弧于;
(5)過點作射線.則就是所求作的角.
請回答:該作圖的依據(jù)是( )
A.B.C.D.
科目:初中數(shù)學 來源: 題型:
【題目】將等腰直角三角形ABC(AB=AC,∠BAC=90°)和等腰直角三角形DEF(DE=DF,∠EDF=90°)按圖1擺放,點D在BC邊的中點上,點A在DE上.
(1)填空:AB與EF的位置關系是 ;
(2)△DEF繞點D按順時針方向轉動至圖2所示位置時,DF,DE分別交AB,AC于點P,Q,求證:∠BPD+∠DQC=180°;
(3)如圖2,在△DEF繞點D按順時針方向轉動過程中,始終點P不到達A點,△ABC的面積記為S1,四邊形APDQ的面積記為S2,那么S1與S2之間是否存在不變的數(shù)量關系?若存在,請寫出它們之間的數(shù)量關系并證明;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線()與直線平行,且與直線交于點.
(1)求直線的函數(shù)表達式;
(2)、分別是直線、上兩點,點的橫坐標為,且軸,若,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC為等邊三角形,D、E分別是AC、BC上的點,且AD=CE,AE與BD相交于點P,BF⊥AE于點F.若PF=4,PD=1,則AE的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小玲和弟弟小東分別從家和圖書館同時出發(fā),沿同一條路相向而行,小玲跑步中途改為步行,到達圖書館恰好用30 min.小東騎自行車以300 m/min的速度直接回家.兩人離家的路程y(m)與各自離開出發(fā)地的時間x(min)之間的函數(shù)圖象如圖9所示.
(1)家與圖書館之間的路程為 m,小玲步行的速度為 m/min;
(2)求小東離家的路程y關于x的函數(shù)解析式,并寫出自變量的取值范圍;
(3)求兩人相遇的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,等腰和等腰中,,,,三點在同一直線上,求證:;
(2)如圖2,等腰中,,,是三角形外一點,且,求證:;
(3)如圖3,等邊中,是形外一點,且,
①的度數(shù)為 ;
②,,之間的關系是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】多好佳水果店在批發(fā)市場購買某種水果銷售,第一次用1500元購進若干千克,并以每千克9元出售,很快售完.由于水果暢銷,第二次購買時,每千克的進價比第一次提高了10%,用1694元所購買的水果比第一次多20千克,以每千克10元售出100千克后,因出現(xiàn)高溫天氣,水果不易保鮮,為減少損失,便降價45%售完剩余的水果.
(1)第一次水果的進價是每千克多少元?
(2)該水果店在這兩次銷售中,總體上是盈利還是虧損?盈利或虧損了多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以G(0,1)為圓心,半徑為2的圓與x軸交于A、B兩點,與y軸交于C,D兩點,點E為⊙O上一動點,CF⊥AE于F,則弦AB的長度為________;點E在運動過程中,線段FG的長度的最小值為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)符合一次函數(shù)y=kx+b,且x=65時,y=55;x=75時,y=45.
(1)求一次函數(shù)y=kx+b的表達式;
(2)若該商場獲得利潤為W元,試寫出利潤W與銷售單價x之間的關系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com