【題目】某文具用品商店銷售A、B兩種款式文具盒,已知購進(jìn)1個A款文具盒比B款文具盒便宜5元,且用300元購入A款文具盒的數(shù)量比購入B款文具盒的數(shù)量多5個.
(1)購進(jìn)一個A款文具盒、一個B款文具盒各需多少元?
(2)若A款文具盒與B款文具盒的售價分別是20元和30元,現(xiàn)該文具用品商店計一劃用不超過1000元購入共計60個A、B兩種款式的文具盒,且全部售完,問如何安排進(jìn)貨才能使銷售利潤最大?并求出最大利潤.
【答案】(1)購進(jìn)一個A款文具盒、一個B款文具盒分別需要15元和20元;(2)最大利潤為400元.
【解析】(1)設(shè)購進(jìn)一個A款文具盒需x元,則一個B款文具盒需(x+5)元,根據(jù)用300元購入A款文具盒的數(shù)量比購入B款文具盒的數(shù)量多5列出方程,求出方程的解即可得到結(jié)果;
(2)設(shè)該商店購進(jìn)A款文具盒a個,則購進(jìn)B款文具盒(60﹣a)個,所獲的利潤為W元,列出W關(guān)于x的關(guān)系式,且列出a的不等式,利用一次函數(shù)的性質(zhì)確定出獲得的最大利潤即可.
(1)設(shè)購進(jìn)一個A款文具盒需x元,則一個B款文具盒需(x+5)元,根據(jù)題意,得:
﹣=5,
解得:x1=15,x2=﹣20,
經(jīng)檢驗,x=15是原方程的根,也符合題意.
答:購進(jìn)一個A款文具盒需15元,一個B款文具盒需20元.
(2)設(shè)該商店購進(jìn)A款文具盒a個,則購進(jìn)B款文具盒(60﹣a)個,所獲的利潤為W元,根據(jù)題意,得:
W=(20﹣15)a+(30﹣20)(60﹣a)=﹣5a+600.
∵該文具用品商店計劃用不超過1000元購入共計60個A、B兩種款式的文具盒,∴15a+20(60﹣a)≤1000,∴a≥40.
∵k=﹣5<0,∴W隨a的增大而減小,當(dāng)a=40時,W有最大值,為﹣5×40+600=400,則獲得最大利潤為400元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的邊AB、AC為腰分別向外作等腰直角三角形ABD和等腰直角三角形ACE,連接DE.若M為BC中點,MA延長線交DE于點H,
(1) 求證:AH⊥DE.
(2) 若DE=4,AH=3,求△ABM的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=45°.若AD平分∠BAC交BC于D,BE⊥AC于E,且交A于O,連接OC.則下列說法中正確的是( 。AD⊥BC;②OC平分BE;③OE=CE;④△ACD≌△BCE;⑤△OCE的周長=AC的長度
A.①②③B.②④⑤C.①③⑤D.①③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=(x>0)的圖象與一次函數(shù)y=﹣x+4的圖象交于A和B(6,n)兩點.
(1)求k和n的值;
(2)若點C(x,y)也在反比例函數(shù)y=(x>0)的圖象上,求當(dāng)2≤x≤6時,函數(shù)值y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在平面直角坐標(biāo)系中,直線AB與軸交于點A(-2,0),與軸夾角為30°,將△ABO沿直線AB翻折,點O的對應(yīng)點C恰好落在雙曲線上,則的值( )
A. -4 B. -2 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請認(rèn)真觀察圖形,解答下列問題:
(1)根據(jù)圖1中條件,試用兩種不同方法表示兩個陰影圖形的面積的和.
方法1: .
方法2: .
(2)從中你能發(fā)現(xiàn)什么結(jié)論?請用等式表示出來: .
(3)利用(2)中結(jié)論解決下面的問題:如圖2,兩個正方形邊長分別為a、b,如果a+b=10,ab=21,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是菱形ABCD邊上的一動點,它從點A出發(fā)沿在A→B→C→D路徑勻速運動到點D,設(shè)△PAD的面積為y,P點的運動時間為x,則y關(guān)于x的函數(shù)圖象大致為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,,.
求證:
證明:因為(已知)
所以(_______)
所以__________.(兩直線平行,內(nèi)錯角相等)
因為.(已知)
所以__________.(_______)
所以.(_______)
所以.(等式性質(zhì)1)
即.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1:
(1)求3A+6B;
(2)若3A+6B的值與x無關(guān),求y的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com