觀察并探求下列各問題,寫出你所觀察得到的結(jié)論.
(1)如圖①,在△ABC中,P為邊BC上一點,則BP+PC______AB+AC(填“>”、“<”或“=”)
(2)將(1)中點P移到△ABC內(nèi),得圖②,試觀察比較△BPC的周長與△ABC的周長的大小,并說明理由.
(3)將(2)中點P變?yōu)閮蓚點P1、P2得圖③,試觀察比較四邊形BP1P2C的周長與△ABC的周長的大小,并說明理由.

解:(1)BP+PC<AB+AC,理由:三角形兩邊之和大于第三邊,

(2)△BPC的周長<△ABC的周長.理由:
如圖,延長BP交AC于M,在△ABM中,BP+PM<AB+AM,在△PMC中,PC<PM+MC,兩式相加得BP+PC<AB+AC,于是得:△BPC的周長<△ABC的周長,

(3)四邊形BP1P2C的周長<△ABC的周長,理由:
如圖,分別延長BP1、CP2交于M,由(2)知,BM+CM<AB+AC,又P1P2<P1M+P2M,
可得,BP1+P1P2+P2C<BM+CM<AB+AC,可得結(jié)論.
分析:(1)根據(jù)三角形中兩邊之和大于第三邊,即可得出結(jié)果,
(2)可延長BP交AC與M,根據(jù)兩邊之和大于第三邊,即可得出結(jié)果,
(3)分別延長BP1、CP2交于M,再根據(jù)(2)中得出的BM+CM<AB+AC,可得出BP1+P1P2+P2C<BM+CM<AB+AC,即可得出結(jié)果.
點評:本題考查了比較線段的長短常常利用三角形的三邊關系以及不等式的性質(zhì),通過作輔助線進行解答,難度較大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

27、觀察并探求下列各問題,寫出你所觀察得到的結(jié)論.
(1)如圖①,在△ABC中,P為邊BC上一點,則BP+PC
AB+AC(填“>”、“<”或“=”)
(2)將(1)中點P移到△ABC內(nèi),得圖②,試觀察比較△BPC的周長與△ABC的周長的大小,并說明理由.
(3)將(2)中點P變?yōu)閮蓚點P1、P2得圖③,試觀察比較四邊形BP1P2C的周長與△ABC的周長的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

32、觀察并探求下列各問題,寫出你所觀察得到的結(jié)論,并說明理由.
(1)如圖,△ABC中,P為邊BC上一點,試觀察比較BP+PC與AB+AC的大小,并說明理由.

(2)將(1)中點P移至△ABC內(nèi),得圖②,試觀察比較△BPC的周長與△ABC的周長的大小,并說明理由.

(3)將(2)中點P變?yōu)閮蓚點P1、P2得下圖,試觀察比較四邊形BP1P2C的周長與△ABC的周長的大小,并說明理由.

(4)將(3)中的點P1、P2移至△ABC外,并使點P1、P2與點A在邊BC的異側(cè),且∠P1BC<∠ABC,∠P2CB<∠ACB,得圖,試觀察比較四邊形BP1P2C的周長與△ABC的周長的大小,并說明理由.

(5)若將(3)中的四邊形BP1P2C的頂點B、C移至△ABC內(nèi),得四邊形B1P1P2C1,如圖⑤,試觀察比較四邊形B1P1P2C1的周長與△ABC的周長的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

觀察并探求下列各問題,寫出你所觀察得到的結(jié)論,并說明理由.
(1)如圖,△ABC中,P為邊BC上一點,試觀察比較BP+PC與AB+AC的大小,并說明理由.

(2)將(1)中點P移至△ABC內(nèi),得圖②,試觀察比較△BPC的周長與△ABC的周長的大小,并說明理由.

(3)將(2)中點P變?yōu)閮蓚點P1、P2得下圖,試觀察比較四邊形BP1P2C的周長與△ABC的周長的大小,并說明理由.

(4)將(3)中的點P1、P2移至△ABC外,并使點P1、P2與點A在邊BC的異側(cè),且∠P1BC<∠ABC,∠P2CB<∠ACB,得圖,試觀察比較四邊形BP1P2C的周長與△ABC的周長的大小,并說明理由.

(5)若將(3)中的四邊形BP1P2C的頂點B、C移至△ABC內(nèi),得四邊形B1P1P2C1,如圖⑤,試觀察比較四邊形B1P1P2C1的周長與△ABC的周長的大小,并說明理由.

查看答案和解析>>

同步練習冊答案