已知拋物線y=-x2+2mx-m2-m+3
(1)證明拋物線頂點(diǎn)一定在直線y=-x+3上;
(2)若拋物線與x軸交于M、N兩點(diǎn),當(dāng)OM•ON=3,且OM≠ON時(shí),求拋物線的解析式;
(3)若(2)中所求拋物線頂點(diǎn)為C,與y軸交點(diǎn)在原點(diǎn)上方,拋物線的對稱軸與x軸交于點(diǎn)B,直線y=-x+3與x軸交于點(diǎn)A.點(diǎn)P為拋物線對稱軸上一動點(diǎn),過點(diǎn)P作PD⊥AC,垂足D在線段AC上.試問:是否存在點(diǎn)P,使S△PAD=S△ABC?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
【答案】分析:(1)先根據(jù)拋物線的解析式,用配方法得出拋物線頂點(diǎn)的表達(dá)式,然后代入直線y=-x+3中即可得出所證的結(jié)論.
(2)已知:OM•ON=3,根據(jù)一元二次方程根與系數(shù)的關(guān)系可知:方程0=-x2+2mx-m2-m+3中,m2-m+3=±3,據(jù)此可求出m的值,然后可根據(jù)OM≠ON和方程的△>0將不合題意的m值舍去,由此可求出拋物線的解析式.
(3)可先根據(jù)拋物線和直線AC的解析式求出A、C點(diǎn)的坐標(biāo).進(jìn)而可求出AC的長.可先設(shè)PD的長為x,那么可用x表示出CD,AD的長,進(jìn)而可表示出△APD的面積,根據(jù)S△PAD=S△ABC,即可得出x的值,也就能求出CD、PD的長,進(jìn)而可求出CP的長,也就不難得出P點(diǎn)的坐標(biāo)了.
解答:解:(1)y=-x2+2mx-m2-m+3=-(x-m)2-m+3,
∴頂點(diǎn)坐標(biāo)為(m,-m+3),
∴頂點(diǎn)在直線y=-x+3上.

(2)∵拋物線與x軸交于M、N兩點(diǎn),
∴△>0,
即:(2m)2-4(m2+m-3)>0,
解得:m<3,
∵OM•ON=3,
∴m2+m-3=±3,
當(dāng)m2+m-3=-3時(shí),m2+m=0,
∴m=0,m=-1,
∴當(dāng)m=0時(shí),y1=-x2+3(與OM≠ON矛盾,舍),
∴m=-1,y1=-x2-2x+3,
當(dāng)m2+m-3=3時(shí),m2+m-6=0,
∴m=2,m=-3,
∴y2=-x2+4x-3,y3=-x2-6x-3.

(3)∵拋物線與y軸交點(diǎn)在原點(diǎn)的上方
∴y=-x2-2x+3,
∴C(-1,4),B(-1,0),
∵直線y=-x+3與x軸交于點(diǎn)A,
∴A(3,0),
∵BA=BC,
∴∠PCD=45°,
∴設(shè)PD=DC=x,
則PC=x,AD=4-x,
∵S△PAD=S△ABC,
(4-x)•x=××4×4,x2-4x+4=0;
解得:x=2±2;
當(dāng)x=2+2時(shí),PC=x=4+2,
∴4-yP=4+2,
∴yP=-2,
∴P(-1,-2),
當(dāng)x=2-2時(shí),PC=4-2
∴yP=2,
∴P(-1,2),
∴P(-1,2)或P(-1,-2).
點(diǎn)評:本題主要考查了二次函數(shù)與一元二次方程的關(guān)系,一元二次方程根與系數(shù)的關(guān)系,二次函數(shù)解析式的確定,圖形面積的求法等知識點(diǎn).考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2-8x+c的頂點(diǎn)在x軸上,則c等于( �。�
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2+(1-2a)x+a2(a≠0)與x軸交于兩點(diǎn)A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范圍,并證明A、B兩點(diǎn)都在原點(diǎn)O的左側(cè);
(2)若拋物線與y軸交于點(diǎn)C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=-x2+bx+c與x軸負(fù)半軸交于點(diǎn)A,與y軸正半軸交于點(diǎn)B,且OA=OB.
精英家教網(wǎng)(1)求b+c的值;
(2)若點(diǎn)C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;
(3)在(2)的條件下,作∠OBC的角平分線,與拋物線交于點(diǎn)P,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•虹口區(qū)一模)如圖,在平面直角坐標(biāo)系xOy中,已知拋物線y=x2+bx+c經(jīng)過A(0,3),B(1,0)兩點(diǎn),頂點(diǎn)為M.
(1)求b、c的值;
(2)將△OAB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°后,點(diǎn)A落到點(diǎn)C的位置,該拋物線沿y軸上下平移后經(jīng)過點(diǎn)C,求平移后所得拋物線的表達(dá)式;
(3)設(shè)(2)中平移后所得的拋物線與y軸的交點(diǎn)為A1,頂點(diǎn)為M1,若點(diǎn)P在平移后的拋物線上,且滿足△PMM1的面積是△PAA1面積的3倍,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黔南州)已知拋物線y=x2-x-1與x軸的交點(diǎn)為(m,0),則代數(shù)式m2-m+2011的值為(  )

查看答案和解析>>

同步練習(xí)冊答案
闁稿骏鎷� 闂傚偊鎷�