【題目】如圖,正方形ABCD中,G為BC邊上一點,BE⊥AG于E,DF⊥AG于F,連接DE.
(1)求證:△ABE≌△DAF;
(2)若AF=1,四邊形ABED的面積為6,求EF的長.
【答案】(1)證明見解析;(2)EF=2.
【解析】試題分析:(1)由∠BAE+∠DAF=90°,∠DAF+∠ADF=90°,推出∠BAE=∠ADF,即可根據(jù)AAS證明△ABE≌△DAF;
(2)設(shè)EF=x,則AE=DF=x+1,根據(jù)四邊形ABED的面積為6,列出方程即可解決問題;
試題解析:解:(1)∵四邊形ABCD是正方形,∴AB=AD,∵DF⊥AG,BE⊥AG,∴∠BAE+∠DAF=90°,∠DAF+∠ADF=90°,∴∠BAE=∠ADF,在△ABE和△DAF中,∵∠BAE=∠ADF,∠AEB=∠DFA,AB=AD,∴△ABE≌△DAF(AAS).
(2)設(shè)EF=x,則AE=DF=x+1,由題意2××(x+1)×1+×x×(x+1)=6,解得x=2或﹣5(舍棄),∴EF=2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOC=∠BOD=120°,∠BOC=∠AOD.
(1)求∠AOD的度數(shù);
(2)若射線OB繞點O以每秒旋轉(zhuǎn)20°的速度順時針旋轉(zhuǎn),同時射線OC以每秒旋轉(zhuǎn)15°的速度逆時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)的時間為t秒(0<t<6),試求當(dāng)∠BOC=20°時t的值;
(3)若∠AOB繞點O以每秒旋轉(zhuǎn)5°的速度逆時針旋轉(zhuǎn),同時∠COD繞點O以每秒旋轉(zhuǎn)10°的速度逆時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)的時間為t秒(0<t<18),OM平分∠AOC,ON平分∠BOD,在旋轉(zhuǎn)的過程中,∠MON的度數(shù)是否發(fā)生改變?若不變,求出其值:若改變,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC三個頂點的坐標(biāo)分別為A(﹣4,﹣1),B(﹣5,﹣4),C(1,﹣3),將△ABC向右平移5個單位長度,再向上平移3個單位長度得到△ ,其中點 分別是點A,B,C的對應(yīng)點.
(1)請你在給出的坐標(biāo)系中畫出和寫出點A′,C′的坐標(biāo);
(2)若△ABC內(nèi)的一點P經(jīng)過上述平移后的對應(yīng)點為,用含的式子表示P點的坐標(biāo) ;(直接寫出結(jié)果即可)
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為反比例函數(shù)y=(k>0)在第一象限內(nèi)圖象上的一點,過點P分別作x軸,y軸的垂線交一次函數(shù)y=﹣x﹣4的圖象于點A、B.若∠AOB=135°,則k的值是( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:若x1,x2是關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個根,則方程的兩個根x1,x2和系數(shù)a,b,c有如下關(guān)系:x1+x2=﹣,x1x2=,我們把它們稱為一元二次方程的根與系數(shù)關(guān)系定理.
問題解決:請你參考根與系數(shù)關(guān)系定理,解答下列問題:
(1)若關(guān)于x的方程x2+3x+a=0有一個根為﹣1,則另一個根為 .
(2)求方程2x2﹣3x=5的兩根之和,兩根之積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結(jié)論的序號是( )
A.①③④ B.①②⑤ C.③④⑤ D.①③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC的三個頂點均在格點上,請按要求完成下列各題:
(1)畫線段AD∥BC且使AD=BC,連接CD;
(2)線段AC的長為 ,CD的長為 ,AD的長為_____;
(3)△ACD為 三角形,四邊形ABCD的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明將一張正方形卡紙剪去一個寬為4cm的長方形(記作A)后,再將剩下的長方形卡紙剪去一個寬為5cm的長方形(記作B).
(1)若長方形A與B的面積均為Scm2,求S的值.
(2)若A的周長是B的周長的倍,求原正方形的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=ax+1與x軸、y軸分別相交于A、B兩點,與雙曲線y=(x>0)相交于點P,PC⊥x軸于點C,且PC=2,點A的坐標(biāo)為(﹣2,0).
(1)求雙曲線的解析式;
(2)若點Q為雙曲線上點P右側(cè)的一點,且QH⊥x軸于H,當(dāng)以點Q、C、H為頂點的三角形與△AOB相似時,求點Q的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com