【題目】平面直角坐標(biāo)系 xOy 中,定義:已知圖形 W 和直線 l.如果圖形 W 上存在一點(diǎn) Q,使得點(diǎn) Q 到直線 l 的距離小于或等于 k,則稱圖形 W 與直線 lk 關(guān)聯(lián),設(shè)圖形 W:線段 AB,其中點(diǎn) At,0)、點(diǎn) Bt+2, 0).

1)線段AB的長(zhǎng)是 ;

2)當(dāng)t1 時(shí),

①已知直線y=﹣x1,點(diǎn)A到該直線的距離為 ;

②已知直線y=﹣x+b,若線段AB與該直線關(guān)聯(lián),求b的取值范圍。

【答案】12;(2)①;②-1≤b≤5.

【解析】

1)利用兩點(diǎn)間距離公式計(jì)算即可;

2)①如圖,設(shè)直線y=-x-1y軸于E,交x軸于F.只要證明AEEF,求出EF即可;

②如圖,作BQ⊥直線y=-x+b,垂足為Q,當(dāng)BQ=時(shí),BR=2,推出R5,0),把R5,0)代入y=-x+b中,得到b=5,由此即可解決問題.

1)∵At,0),Bt+20),

AB=t+2-t=2

2)①如圖,設(shè)直線y=-x-1y軸于E,交x軸于F

E0-1),F-1,0),

A10),

OE=OF=OA=1,

∴∠AEF=90°,

AEEF,

AE=,

∴點(diǎn)A到該直線的距離為;

②如圖,作BQ⊥直線y=-x+b,垂足為Q,

當(dāng)BQ=時(shí),BR=2,

R50),

R5,0)代入y=-x+b中,得到b=5,

∴若線段AB與該直線關(guān)聯(lián),則b的取值范圍-1≤b≤5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)在春節(jié)期間搞優(yōu)惠促銷活動(dòng),商場(chǎng)將29英寸和25英寸彩電共96臺(tái)分別以8折和7折出售,共得168400元。已知29英寸彩電原價(jià)為3000/臺(tái),25英寸彩電原價(jià)為2000/臺(tái),出售29英寸和25英寸彩電各多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】知識(shí)鏈接:

“轉(zhuǎn)化、化歸思想”是數(shù)學(xué)學(xué)習(xí)中常用的一種探究新知、解決問題的基本的數(shù)學(xué)思想方法,通過“轉(zhuǎn)化、化歸”通常可以實(shí)現(xiàn)化未知為已知,化復(fù)雜為簡(jiǎn)單,從而使問題得以解決.

1)問題背景:已知:△ABC.試說明:∠A+B+C=180°.

問題解決:(填出依據(jù))

解:(1)如圖①,延長(zhǎng)ABE,過點(diǎn)BBFAC.

BFAC(作圖)

∴∠1=C

2=A

∵∠2+ABC+1=180°(平角的定義)

∴∠A+ABC+C=180°(等量代換)

小結(jié)反思:本題通過添加適當(dāng)?shù)妮o助線,把三角形的三個(gè)角之和轉(zhuǎn)化成了一個(gè)平角,利用平角的定義,說明了數(shù)學(xué)上的一個(gè)重要結(jié)論“三角形的三個(gè)內(nèi)角和等于180°.

2)類比探究:請(qǐng)同學(xué)們參考圖②,模仿(1)的解決過程試說明“三角形的三個(gè)內(nèi)角和等于180°”

3)拓展探究:如圖③,是一個(gè)五邊形,請(qǐng)直接寫出五邊形ABCDE的五個(gè)內(nèi)角之和∠A+B+C+D+E= .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn) A,B,C,D 依次在同一條直線上,點(diǎn) EF 分別在直線 AD 的兩側(cè),已知 BE//CF,∠A=D,AE=DF

(1)求證:四邊形 BFCE 是平行四邊形.

(2)若 AD=10EC=3,∠EBD=60°,當(dāng)四邊形 BFCE是菱形時(shí),求 AB 的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:1)如圖1ABC中,DEBC分別交ABACD,E兩點(diǎn),過點(diǎn)EEFABBC于點(diǎn)F。請(qǐng)按圖示數(shù)據(jù)填空:四邊形DBFE的面積______EFC的面積______,ADE的面積______。

探究發(fā)現(xiàn):(2)在(1)中,若 ,DEBC間的距離為。請(qǐng)證明

拓展遷移:3)如圖2,DEFG的四個(gè)頂點(diǎn)在ABC的三邊上,若ADGDBE、GFC的面積分別為2、5、3,試?yán)茫?/span>2)中的結(jié)論求ABC的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,DBC的中點(diǎn),DE⊥BC,CE∥AD,若AC=2,CE=4,求四邊形ACEB的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中華文明,源遠(yuǎn)流長(zhǎng);中華漢字,寓意深廣,為了傳承優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3000名學(xué)生參加的“漢字聽寫”大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績(jī)均不低于50分,為了更好地了解本次大賽的成績(jī)分布情況,隨機(jī)抽取了其中200名學(xué)生的成績(jī)(成績(jī)x取整數(shù),總分100分)作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:

成績(jī)x/分

頻數(shù)

頻率

50≤x<60

10

0.05

 60≤x<70

30

0.15

 70≤x<80

40

n

 80≤x<90

m

0.35

 90≤x≤100

50

0.25

請(qǐng)根據(jù)所給信息,解答下列問題:

(1)m=   ,n=   

(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;

(3)這次比賽成績(jī)的中位數(shù)會(huì)落在   分?jǐn)?shù)段;

(4)若成績(jī)?cè)?0分以上(包括90分)的為“優(yōu)”等,則該校參加這次比賽的3000名學(xué)生中成績(jī)“優(yōu)”等約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線MN表示一條鐵路,A,B是兩個(gè)城市,它們到鐵路的垂直距離分別為AA1=20km,BB1=40km,已知A1B1=80km,現(xiàn)要在A1,B1之間設(shè)一個(gè)中轉(zhuǎn)站P,使兩個(gè)城市到中轉(zhuǎn)站的距離之和最短,請(qǐng)你設(shè)計(jì)一種方案確定P點(diǎn)的位置,并求這個(gè)最短距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△APB中,AB=2,∠APB=90°,在AB的同側(cè)作正△ABD、正△APE和正△BPC,則四邊形PCDE面積的最大值是__

查看答案和解析>>

同步練習(xí)冊(cè)答案