【題目】在正方形中,點是邊的中點,點是對角線上的動點,連接,過點作交正方形的邊于點;
(1)當點在邊上時,①判斷與的數量關系;
②當時,判斷點的位置;
(2)若正方形的邊長為2,請直接寫出點在邊上時,的取值范圍.
【答案】(1)①,理由詳見解析;②點位于正方形兩條對角線的交點處(或中點出),理由詳見解析;(2)
【解析】
(1) ①過點作于點,于點,通過證可得ME=MF;
②點位于正方形兩條對角線的交點處時,,可得;
(2)當點F分別在BC的中點處和端點處時,可得M的位置,進而得出AM的取值范圍。
解:(1)。理由是:
過點作于點,于點
在正方形中,
矩形為正方形
又
②點位于正方形兩條對角線的交點處(或中點處)
如圖,是的中位線,
又,
此時,是中點,
且,
,
(2)當點F在BC中點時,M在AC,BD交點處時,此時AM最小, AM=AC= ; 當點F與點C重合時,M在AC,BD交點到點C的中點處,此時AM最大, AM= 。
故答案為:
科目:初中數學 來源: 題型:
【題目】為豐富學生課余生活,我校準備開設興趣課堂.為了了解學生對繪畫、書法、舞蹈、樂器這四個興趣小組的喜愛情況,在全校進行隨機抽樣調查,并根據收集的數據繪制了下面兩幅統(tǒng)計圖(信息尚不完整),請根據圖中提供的信息,解答下面的問題:
(1)此次共調查了多少名同學?
(2)將條形圖補充完整,并計算扇形統(tǒng)計圖中樂器部分的圓心角的度數;
(3)如果我校共有1000名學生參加這4個課外興趣小組,而每個教師最多只能輔導本組的25名學生,估計書法興趣小組至少需要準備多少名教師?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】嘉嘉將長為20cm,寬為10cm的長方形白紙,按圖所示方法粘合起來,粘合部分(圖上陰影部分)的寬為3cm.
(1)求5張白紙粘合后的長度;
(2)設x張白紙粘合后總長為ycm.寫出y與x之間的函數關系式;
(3)求當x=20時的y值,并說明它在題目中的實際意義.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:A=2a2+3ab-2a-1,B=-a2+ab+1.
(1)若 |a+1| b- 22 0 ,求4A-(3A-2B)的值;
(2)若(1)中代數式的值與a的取值無關,求b的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明的媽媽在菜市場買回3斤蘿卜、2斤排骨,準備做蘿卜排骨湯,下面是爸爸媽媽的對話:
媽媽:“上個月蘿卜的單價是元/斤,排骨的單價比蘿卜的7倍還多2元”;
爸爸:“今天,報紙上說與上個月相比,蘿卜的單價上漲了25%,排骨的單價上漲了20%”
請根據上面的對話信息回答下列問題:
(1)請用含的式子填空:上個月排骨的單價是_________元/斤,這個月蘿卜的單價是__________元/斤,排骨的單價是______________元/斤。
(2)列式表示今天買的蘿卜和排骨比上月買同重量的蘿卜和排骨一共多花多少元?(結果要求化成最簡)
(3)當=4,求今天買的蘿卜和排骨比上月買同重量的蘿卜和排骨一共多花多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】電話計費問題,下表中有兩種移動電話計費方式:
溫馨揭示:方式一:月使用費固定收(月收費:38元/月);主叫不超限定時間不再收費(80分鐘以內,包括80分鐘);主叫超時部分加收超時費(超過部分0.15元/);被叫免費。
方式二:月使用費0元(無月租費);主叫限定時間0分鐘;主叫每分鐘0.35元/;被叫免費。
(1)設一個月內用移動電話主叫時間為,方式一計費元,方式二計費元。寫出和關于的函數關系式。
(2)在平面直角坐標系中畫出(1)中的兩個函數圖象,記兩函數圖象交點為點,則點的坐標為_____________________(直接寫出坐標,并在圖中標出點)。
(3)根據(2)中函數圖象,請直接寫出如何根據每月主叫時間選擇省錢的計費方式。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在一個平臺遠處有一座古塔,小明在平臺底部的點C處測得古塔頂部B的仰角為60°,在平臺上的點E處測得古塔頂部的仰角為30°.已知平臺的縱截面為矩形DCFE,DE=2米,DC=20米,求古塔AB的高(結果保留根號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某報社為了解市民對“社會主義核心價值觀”的知曉程度,采取隨機抽樣的方式進行問卷調查,調查結果分為“A.非常了解”、“B.了解”、“C.基本了解”三個等級,并根據調查結果繪制了如下兩幅不完整的統(tǒng)計圖.
(1)這次調查的市民人數為________人,m=________,n=________;
(2)補全條形統(tǒng)計圖;
(3)若該市約有市民100000人,請你根據抽樣調查的結果,估計該市大約有多少人對“社會主義核心價值觀”達到“A.非常了解”的程度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】平面直角坐標系xOy中,點A(x1,y1)與B(x2,y2),如果滿足x1+x2=0,y1﹣y2=0,其中x1≠x2,則稱點A與點B互為反等點.已知:點C(3,8)、G(﹣5,8),聯結線段CG,如果在線段CG上存在兩點P,Q互為反等點,那么點P的橫坐標xP的取值范圍是__.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com