探索:
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
(x-1)(x4+x3+x2+x+1)=x5-1

(1)試求26+25+24+23+22+2+1的值.
(2)判斷22008+22007+22006+…+22+2+1的值的個位數(shù)是幾?

解:(1)26+25+24+23+22+2+1,
=1×(26+25+24+23+22+2+1),
=(2-1)(26+25+24+23+22+2+1),
=27-1;

(2)由(1)可得,22008+22007+22006+…+22+2+1=22009-1,
分析可得:2的1次方個位是2,2的2次方個位是4,2的3次方個位是8,2的4次方個位是6,
2的5次方個位是2,2的6次方個位是4,2的7次方個位是8,2的8次方個位是6,
…,四個一組,依次循環(huán),故可得22009的個位數(shù)字是2,
則22008+22007+22006+…+22+2+1即22009-1的值的個位數(shù)是1.
分析:(1)根據(jù)題目中的方法,可將1恒等變形為(2-1),套入方法可得答案.
(2)由(1)易得,22008+22007+22006+…+22+2+1=22009-1,依次分析2的次方的個位數(shù)字可得規(guī)律,運(yùn)用規(guī)律可得22009的個位數(shù)字是2,進(jìn)而可得答案.
點(diǎn)評:本題考查發(fā)現(xiàn)規(guī)律并運(yùn)用規(guī)律解題的能力,有一定難度,但認(rèn)真觀察,細(xì)心分析也可以求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,先找到長方形紙的寬DC的中點(diǎn)E,將∠C過E點(diǎn)折起任意一個角,折痕是EF,再將∠D過E點(diǎn)折起,使DE和CE重合,折痕是GE,請?zhí)剿飨铝袉栴}:
(1)∠FEC'和∠GEC′互為余角嗎?為什么?
(2)∠GEF是直角嗎?為什么?
(3)在上述折紙圖形中,還有哪些互為余角?還有哪些互為補(bǔ)角?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

請把下列每對數(shù)在數(shù)軸上所對應(yīng)的兩點(diǎn)的距離寫在橫線上:
(1)①3與2
1
1
;  3與-2
5
5
;
③-4與-4
1
2
1
2
1
2
;  ④-3
1
2
與2
1
2
6
6
;
你能發(fā)現(xiàn)求出距離與這兩個數(shù)的差有什么關(guān)系嗎?如果有一對數(shù)為a,b,則a,b兩數(shù)所對應(yīng)的兩
點(diǎn)之間的距離可表示為
a-b
a-b

(2)如圖所示,點(diǎn)A、B所代表的數(shù)分別為1,-2,在數(shù)軸上畫出與A、B兩點(diǎn)的距離之和為5的點(diǎn)(并表上相應(yīng)的字母)
(3)由以上探索解答下列問題:
①當(dāng)|x+1|+|x-2|=7時,x=
4或-4
4或-4
; 
②|x-3|+|x-4|+|x-5|的和的最小值=
2
2

③求|x-1|+|x-2|+|x-3|…|x-21|的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

自然數(shù)中有許多奇妙而有趣的現(xiàn)象,很多秘密等待我們探索.比如:寫出一個你喜歡的數(shù),把這個數(shù)乘以2,再加上2,把結(jié)果乘以5,再減去10,再除以10,結(jié)果你會重新得到原來的數(shù).請你用含n的式子表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

教材第九章中探索乘法公式時,設(shè)置由圖形面積的不同表示方法驗(yàn)證了乘法公式.我國著名的數(shù)學(xué)家趙爽,早在公元3世紀(jì),就把一個矩形分成四個全等的直角三角形,用四個全等的直角三角形拼成了一個大的正方形(如圖1),這個圖形稱為趙爽弦圖,驗(yàn)證了一個非常重要的結(jié)論:在直角三角形中兩直角邊a、b與斜邊c滿足關(guān)系式a2+b2=c2,稱為勾股定理.

(1)愛動腦筋的小明把這四個全等的直角三角形拼成了另一個大的正方形(如圖2),也能驗(yàn)證這個結(jié)論,請你幫助小明完成驗(yàn)證的過程.
(2)小明又把這四個全等的直角三角形拼成了一個梯形(如圖3),利用上面探究所得結(jié)論,求當(dāng)a=3,b=4時梯形ABCD的周長.(3)如圖4,在每個小正方形邊長為1的方格紙中,△ABC的頂點(diǎn)都在方格紙格點(diǎn)上.請在圖中畫出△ABC的高BD,利用上面的結(jié)論,求高BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

探索研究:
(1)觀察一列數(shù)2,4,8,16,32,…,發(fā)現(xiàn)從第二項(xiàng)開始,每一項(xiàng)與前一項(xiàng)之比是一個常數(shù),這個常數(shù)是
2
2
;根據(jù)此規(guī)律.如果n.(n為正整數(shù))表示這個數(shù)列的第n項(xiàng),那么a18=
218
218
,an=
2n
2n

(2)如果欲求1+3+32+33+…+320的值,
可令S=1+3+32+33+…+320,①
將①式兩邊同乘以3,得
3S=
3+32+33+…+320+321
3+32+33+…+320+321
,②
由②減去①式,得
S=
321-1
2
321-1
2

(3)用由特殊到一般的方法知:若數(shù)列a1,a2,a3,…an,從第二項(xiàng)開始每一項(xiàng)與前一項(xiàng)之比的常數(shù)為q,則an=
a1qn-1
a1qn-1
(用含a1,q,n的代數(shù)式表示),如果這個常數(shù)q≠1,那么a1+a2+a3+…+an=
a1qn-a1
q-1
a1qn-a1
q-1
(用含a1,q,n的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊答案