【題目】在平面直角坐標(biāo)系中描出點(diǎn) A(﹣2,0)、B(3,1)、C(2,3),將各點(diǎn)用線段依次 連接起來(lái),并解答如下問(wèn)題:

(1)在平面直角坐標(biāo)系中畫出 A′B′C′,使它與 ABC 關(guān)于 x 軸對(duì)稱,并直接寫出 A′B′C′三個(gè)頂點(diǎn)的坐標(biāo);

(2)求ABC的面積.

【答案】(1)作圖見解析;A'(-2,0)、B'(3,-1)C'(2,-3);(2)5.5

【解析】

(1)在坐標(biāo)系內(nèi)畫出ABC,再作出各點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn),順次連接各點(diǎn)即可;

(2)利用矩形的面積減去三個(gè)頂點(diǎn)上三角形的面積即可.

(1)如圖所示,由圖可知A'(-2,0)、B'(3,-1)C'(2,-3);

(2)由圖可知,SABC=5×3-×5×1-×3×4-×2×1,

=15--6-1,

=5.5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB,CD相交于點(diǎn)O,OEAB于O,若BOD=40°,則不正確的結(jié)論是( )

A.AOC=40° B.COE=130° C.EOD=40° D.BOE=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ADBC,垂足為點(diǎn)D,CE是邊AB上的中線,如果CD=BE,B=40°,那么∠BCE=_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示ABDE,ACDFAC=DF下列條件中,不能判斷ABC≌△DEF的是( 。

A. AB=DE B. B=∠E C. EF=BC D. EFBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),A點(diǎn)的坐標(biāo)為(4,0),C點(diǎn)的坐標(biāo)為(0,6),點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿著O﹣C﹣B﹣A﹣O的路線移動(dòng)(即:沿著長(zhǎng)方形移動(dòng)一周).
(1)寫出B點(diǎn)的坐標(biāo)();
(2)當(dāng)點(diǎn)P移動(dòng)了4秒時(shí),描出此時(shí)P點(diǎn)的位置,并寫出點(diǎn)P的坐標(biāo).
(3)在移動(dòng)過(guò)程中,當(dāng)點(diǎn)P到x軸距離為5個(gè)單位長(zhǎng)度時(shí),求點(diǎn)P移動(dòng)的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某周日上午8:00小宇從家出發(fā),乘車1小時(shí)到達(dá)某活動(dòng)中心參加實(shí)踐活動(dòng).11:00時(shí)他在活動(dòng)中心接到爸爸的電話,因急事要求他在12:00前回到家,他即刻按照來(lái)活動(dòng)中心時(shí)的路線,以5千米/小時(shí)的平均速度快步返回.同時(shí),爸爸從家沿同一路線開車接他,在距家20千米處接上了小宇,立即保持原來(lái)的車速原路返回.設(shè)小宇離家x(小時(shí))后,到達(dá)離家y(千米)的地方,圖中折線OABCD表示y與x之間的函數(shù)關(guān)系.

(1)活動(dòng)中心與小宇家相距 千米,小宇在活動(dòng)中心活動(dòng)時(shí)間為 小時(shí),他從活動(dòng)中心返家時(shí),步行用了 小時(shí);

(2)求線段BC所表示的y(千米)與x(小時(shí))之間的函數(shù)關(guān)系式(不必寫出x所表示的范圍);

(3)根據(jù)上述情況(不考慮其他因素),請(qǐng)判斷小宇是否能在12:00前回到家,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:點(diǎn)P是△ABC內(nèi)部或邊上的點(diǎn)(頂點(diǎn)除外),在△PAB,△PBC,△PCA中,若至少有一個(gè)三角形與△ABC相似,則稱點(diǎn)P是△ABC的自相似點(diǎn).
例如:如圖1,點(diǎn)P在△ABC的內(nèi)部,∠PBC=∠A,∠PCB=∠ABC,則△BCP∽△ABC,故點(diǎn)P是△ABC的自相似點(diǎn).
請(qǐng)你運(yùn)用所學(xué)知識(shí),結(jié)合上述材料,解決下列問(wèn)題:
在平面直角坐標(biāo)系中,點(diǎn)M是曲線y= (x>0)上的任意一點(diǎn),點(diǎn)N是x軸正半軸上的任意一點(diǎn).

(1)如圖2,點(diǎn)P是OM上一點(diǎn),∠ONP=∠M,試說(shuō)明點(diǎn)P是△MON的自相似點(diǎn);當(dāng)點(diǎn)M的坐標(biāo)是( ,3),點(diǎn)N的坐標(biāo)是( ,0)時(shí),求點(diǎn)P的坐標(biāo);

(2)如圖3,當(dāng)點(diǎn)M的坐標(biāo)是(3, ),點(diǎn)N的坐標(biāo)是(2,0)時(shí),求△MON的自相似點(diǎn)的坐標(biāo);

(3)是否存在點(diǎn)M和點(diǎn)N,使△MON無(wú)自相似點(diǎn)?若存在,請(qǐng)直接寫出這兩點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,OAC的中點(diǎn),過(guò)點(diǎn)O的直線分別與AB,CD交于點(diǎn)E,F,連接BFAC于點(diǎn)M,連接DEBO.若∠COB60°,FOFC,則下列結(jié)論:①FBOC,OMCM②△EOB≌△CMB;③四邊形EBFD是菱形;④MBOE32.其中正確結(jié)論的個(gè)數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,過(guò)點(diǎn)D作對(duì)角線BD的垂線交BA的延長(zhǎng)線于點(diǎn)E.
(1)證明:四邊形ACDE是平行四邊形;
(2)若AC=8,BD=6,求△ADE的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案