【題目】如圖,在等邊ABC內(nèi)有一點D,AD=4BD=3,CD=5,將ABDA點逆時針旋轉(zhuǎn),使ABAC重合,點D旋轉(zhuǎn)至點E,則四邊形ADCE的面積為(  

A.12B.C.D.

【答案】C

【解析】

此題連接DE,先利用旋轉(zhuǎn)和等邊三角形的性質(zhì)證明△ADE是等邊三角形,根據(jù)題意,由△ADE是等邊三角形依據(jù)勾股定理判定△CDE是直角三角形即可求四邊形的面積.

如圖:

連接DE,過點AAN 垂直DE于點E,

根據(jù)題意由旋轉(zhuǎn)知AD=AE∠BAD=CAE,

又∵等邊ABC中,∠BAC=60°,

∴∠BAD+CAD=CAE+CAD,

即∠BAC=DAE=60°,

∴△ADE是等邊三角形,

DE=AD=4

BD=3CD=5

,

△CDE是直角三角形,

AD=4,∠ADE=60°,

∴∠DAN=30°,

DN=2

由勾股定理得AN= ,

=,

,

,

,

即四邊形ADCE的面積是,

故答案為:C

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】【問題情境】

已知矩形的面積為a(a為常數(shù),a>0),當該矩形的長為多少時,它的周長最小?最小值是多少?

【數(shù)學模型】

設該矩形的長為x,周長為y,則y與x的函數(shù)表達式為y=2(x+)(x>0).

【探索研究】

小彬借鑒以前研究函數(shù)的經(jīng)驗,先探索函數(shù)y=x+的圖象性質(zhì).

(1)結(jié)合問題情境,函數(shù)y=x+的自變量x的取值范圍是x>0,下表是y與x的幾組對應值.

x

1

2

3

m

y

4

3

2

2

2

3

4

①寫出m的值;

②畫出該函數(shù)圖象,結(jié)合圖象,得出當x=   時,y有最小值,y最小=   ;

提示:在求二次函數(shù)y=ax2+bx+c(a≠0)的最大(。┲禃r,除了通過觀察圖象,還可以通過配方得到.試用配方法求函數(shù)y=x+(x>0)的最小值,解決問題(2)

【解決問題】

(2)直接寫出“問題情境”中問題的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某服裝廠生產(chǎn)一種西裝和領帶,西裝每套定價元,領帶每條定價元,廠方在開展促銷活動期間,向客戶提供兩種優(yōu)惠方案:

買一套西裝送一條領帶;

西裝和領帶都按定價的付款.

現(xiàn)某客戶要到該服裝廠購買西裝套,領帶條().

(1)客戶分別按方案、方案購買,各需付款多少元?(用含的代數(shù)式表示);

(2)若,通過計算說明此時按哪種方案購買較為合算?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,天星山山腳下西端A處與東端B處相距800(1+)米,小軍和小明同時分別從A處和B處向山頂C勻速行走.已知山的西端的坡角是45°,東端的坡角是30°,小軍的行走速度為/秒.若小明與小軍同時到達山頂C處,則小明的行走速度是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtAOB中,兩直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,將AOB繞點B逆時針旋轉(zhuǎn)90°后得到AOB.若反比例函數(shù)的圖象恰好經(jīng)過斜邊AB的中點C,SABO=4,tanBAO=2,則k的值為

A.3 B.4 C.6 D.8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,A,B的坐標分別為(1,0),(3,0),現(xiàn)同時將點AB分別向上平移2個單位,再向右平移1個單位,分別得到點A,B的對應點C,D,連接ACBD.

(1)求點C,D的坐標及四邊形ABDC的面積S四邊形ABDC;
(2)y軸上是否存在一點P,連接PA,PB,使SPAB=S四邊形ABDC?若存在這樣一點,求出點P的坐標;若不存在,試說明理由;
(3)P是直線BD上一個動點,連接PCPO,當點P在直線BD上運動時,請直接寫出∠OPC與∠PCD、∠POB的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】按要求作圖,不要求寫做法,但要保留作圖痕跡.

1)如圖1,四邊形ABCD是平行四邊形,EBC上任意一點,請只用直尺(不帶刻度)在邊AD上找點F,使DF=BE

2)如圖2,BE是菱形ABCD的邊AD上的高,請只用直尺(不帶刻度)作出菱形ABCD的邊AB上的高DF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,垂足為,點上,,垂足為

(1)平行嗎?為什么?

(2)如果,且,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】初三年級的一場籃球比賽中,如圖隊員甲正在投籃,已知球出手時離地面高m,與籃圈中心的水平距離為7m,當球出手后水平距離為4m時到達最大高度4m,設籃球運行的軌跡為拋物線,籃圈距地面3m

1)建立如圖所示的平面直角坐標系,求拋物線的解析式并判斷此球能否準確投中?

2)此時,若對方隊員乙在甲前面1m處跳起蓋帽攔截,已知乙的最大摸高為3.1m,那么他能否獲得成功?

查看答案和解析>>

同步練習冊答案