已知⊙O1與⊙O2的半徑分別為5和3,且⊙O1與⊙O2相切,則O1O2的長(zhǎng)為( 。
分析:由⊙O1與⊙O2相切,可分別從⊙O1與⊙O2內(nèi)切或⊙O1與⊙O2外切去分析,根據(jù)兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系即可求得O1O2的值.
解答:解:①若⊙O1與⊙O2內(nèi)切,
則O1O2=5-3=2;
②若⊙O1與⊙O2外切,
則O1O2=3+5=8;
故O1O2等于2或8.
故選C.
點(diǎn)評(píng):此題考查了圓與圓的位置關(guān)系.此題難度不大,解題的關(guān)鍵是注意掌握兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系,注意⊙O1與⊙O2相切分為⊙O1與⊙O2內(nèi)切或⊙O1與⊙O2外切兩種情況.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

6、已知⊙O1與⊙O2的半徑分別為3cm和4cm,若O1O2=7cm,則⊙O1與⊙O2的位置關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、已知⊙O1與⊙O2的半徑分別是2cm、4cm,圓心距O1O2為3cm,則⊙O1與⊙O2的位置關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、已知⊙O1與⊙O2的圓心距是9cm,它們的半徑分別為3cm和6cm,則這兩圓的位置關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知⊙O1與⊙O2的半徑分別為2cm和5cm,兩圓的圓心距O1O2=5cm,則兩圓的位置關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知⊙O1與⊙O2的半徑分別為r1,r2,⊙O2經(jīng)過(guò)⊙O1的圓心O1,且兩圓相交于A(yíng),B兩點(diǎn),C為⊙O2上的點(diǎn),連接AC交⊙O1于D點(diǎn),再連接BC,BD,AO1,AO2,O1O2,有如下四個(gè)結(jié)論:①∠BDC=∠AO1O2;②
BD
BC
=
r1
r2
;③AD=DC; ④BC=DC.其中正確結(jié)論的序號(hào)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案